Поражение нервной системы при эндокринной патологии. Уровни взаимосвязи эндокринной и нервной систем Нервные и эндокринные компоненты деятельности

Двустороннее действие нервной и эндокринной систем

Каждая ткань и орган человека функционируют под двойным контролем: автономной нервной системы и гуморальных факторов, в частности гормонов. Этот двойной контроль - основа «надёжности» регуляторных влияний, заданием которых является поддерживать определённый уровень отдельных физических и химических параметров внутренней среды.

Эти системы возбуждают или тормозят различные физиологические функции, чтобы свести к минимуму отклонения этих параметров вопреки значительным колебаниям во внешней среде. Эта деятельность согласовывается с активностью систем, обеспечивающих взаимодействие организма с условиями окружающей среды, которая постоянно изменяется.

Органы человека имеют большое количество рецепторов, раздражение которых вызывает различные физиологические реакции. Вместе с тем к органам подходит много нервных окончаний от центральной нервной системы. Значит, существует двусторонняя связь органов человека с нервной системой: они получают сигналы от центральной нервной системы и, в свою очередь, являются источником рефлексов, которые изменяют состояние их самих и организма в целом.

Эндокринные железы и гормоны, которые они вырабатывают, находятся в тесной взаимосвязи с нервной системой, образуя общий интегральный механизм регуляции.

Связь эндокринных желез с нервной системой является двояконаправленной: железы плотно иннервированы со стороны вегетативной нервной системы, а секрет желез через кровь действует на нервные центры.

Замечание 1

Для поддержания гомеостаза и осуществления основных жизненных функций эволюционно возникли две основные системы: нервная и гуморальная, которые работают взаимосогласованно.

Гуморальная регуляция осуществляется путём образования в эндокринных железах или группах клеток, выполняющих эндокринную функцию (в железах смешанной секреции), и поступления в циркулирующие жидкости биологически активных веществ - гормонов. Для гормонов характерно дистантное действие и способность к влиянию в очень низких концентрациях.

Интеграция нервной и гуморальной регуляции в организме особенно ярко проявляется во время действия стрессовых факторов.

Клетки тела человека объединены в ткани, а те, в свою очередь, в системы органов. В целом всё это представляет единую надсистему организма. Всё огромное количество клеточных элементов при отсутствии в организме сложного механизма регуляции не имело бы возможности функционировать как единое целое.

Система желез внутренней секреции и нервная система играют особенную роль в регуляции. Именно состояние эндокринной регуляции определяет характер всех протекающих в нервной системе процессов.

Пример 1

Под действием андрогенов и эстрогенов формируется инстинктивное поведение, половые инстинкты. Очевидно, что гуморальная система контролирует и нейроны, так же как и другие клетки нашего организма.

Эволюционно нервная система возникла позднее, чем эндокринная. Эти две системы регуляции дополняют друг друга, образуя единый функциональный механизм, который обеспечивает высокоэффективную нейрогуморальную регуляцию, ставя её во главе всех систем, которые согласовывают все жизненные процессы многоклеточного организма.

Это регулирование постоянства внутренней среды в организме, которая происходит по принципу обратной связи, не может выполнять все задания адаптации организма, но очень эффективна для поддержания гомеостаза,.

Пример 2

Кора надпочечников вырабатывает стероидные гормоны в ответ на эмоциональное возбуждение, заболевания, голод и т.п.

Необходима связь между нервной системой и эндокринными железами, чтобы эндокринная система могла реагировать на эмоции, свет, запахи, звуки и т.д.

Регулирующая роль гипоталамуса

Регулирующее влияние ЦНС на физиологическую активность желез осуществляется через гипоталамус.

Гипоталамус афферентным путём связан с другими частями ЦНС, прежде всего со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиями (подкорковые образования, расположенные в белом веществе полушарий большого мозга), гипокампом (центральной структурой лимбической системы), отдельными полями коры больших полушарий и др. Благодаря этому в гипоталамус поступает информация со всего организма; сигналы от экстеро- и интерорецепторов, которые попадают в ЦНС через гипоталамус, передаются эндокринными железами.

Таким образом, нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы с физиологической активностью (в частности у рилизинг - гормоны).

Гипофиз как регулятор биологических процессов

Гипофиз получает сигналы, которые оповещают обо всём происходящем в организме, но прямой связи с внешней средой не имеет. Но для того, чтобы жизнедеятельность организма не нарушалась постоянно факторами внешней среды, должно происходить приспособление организма к изменчивым внешним условиям. О внешних влияниях организм узнаёт получая информацию от органов чувств, передающих её к центральной нервной системе.

Выполняя роль верховной железы внутренней секреции , гипофиз сам управляется центральной нервной системой и, в частности, гипоталамусом. Этот высший вегетативный центр и занимается постоянной координацией и регуляцией деятельности различных отделов мозга и всех внутренних органов.

Замечание 2

Существование всего организма, постоянство его внутренней среды контролируется именно гипоталамусом: обмен белков, углеводов, жиров и минеральных солей, количество воды в тканях, тонус сосудов, частота сердечных сокращений, температура тела и т. п.

Единая нейроэндокринная регуляторная система в организме образуется в результате объединения на уровне гипоталамуса большинства гуморальных и нервных путей регуляции.

Аксоны от расположенных в коре больших полушарий и подкорковых ганглиях нейронов подходят к клеткам гипоталамуса. Они секретируют нейромедиаторы, которые как активируют секреторную активность гипоталамуса, так и тормозят. Нервные импульсы, поступившие из мозга, под влиянием гипоталамуса превращаются в эндокринные стимулы, которые в зависимости от поступающих к гипоталамусу из желез и тканей гуморальных сигналов, усиливаются или ослабевают

Руководство гипоталамусом гипофиза происходит с использованием и нервных связей, и системы кровеносных сосудов. Поступающая в переднюю долю гипофиза кровь обязательно проходит сквозь срединное поднятие гипоталамуса, где происходит её обогащение гипоталамическими нейрогормонами.

Замечание 3

Нейрогормоны имеют пептидную природу и являются частями белковых молекул.

В наше время определили семь нейрогормонов - либеринов («освободителей»), стимулирующих синтез тропных гормонов в гипофизе. А три нейрогормона наоборот, тормозят их выработку – меланостатин, пролактостатин и соматостатин.

Вазопрессин и окситоцин также являются нейрогормонами. Окситоцин стимулирует сокращение гладкой мускулатуры матки во время родов, выработку молока молочными железами. При активном участии вазопрессина происходит регуляция транспорта воды и солей через клеточные мембраны, уменьшается просвет сосудов (повышается кровяное давление). За способность задерживать воду в организме, этот гормон часто называют антидиуретическим гормоном (АДГ). Главная точка приложения АДГ - почечные канальцы, где под его влиянием происходит стимуляция обратного всасывания воды в кровь из первичной мочи.

Нервные клетки ядер гипоталамуса вырабатывают нейрогормоны, а потом собственными аксонами транспортируют их в заднюю долю гипофиза, и уже отсюда эти гормоны способны поступать в кровь, вызывая сложное влияние на системы организма.

Однако гипофиз и гипоталамус не только посылают приказы посредством гормонов, но и сами способны осень точно анализировать сигналы, которые поступают от периферических эндокринных желез. Эндокринная система действует по принципу обратной связи. Если железа внутренней секреции вырабатывает избыток гормонов, то замедляется выделение гипофизом специфического гормона, а если гормона вырабатывается недостаточно, то усиливается выработка соответствующего тропного гормона гипофиза.

Замечание 4

В процессе эволюционного развития механизм взаимодействия гормонов гипоталамуса, гормонов гипофиза и желез внутренней секреции отработан достаточно надёжно. Но если произойдёт сбой работы хотя бы одного звена этой сложной цепи, тут же возникнет нарушение соотношений (количественных и качественных) во всей системе, несущее различные эндокринные заболевания.

Тело человека состоит из клеток, соединяющихся в ткани и системы - все это в целом представляет собой единую сверхсистему организма. Мириады клеточных элементов не смогли бы работать как единое целое, если бы в организме не существовал сложный механизм регуляции. Особую роль в регуляции играет нервная система и система эндокринных желез. Характер процессов, протекающих в центральной нервной системе, во многом определяется состоянием эндокринной регуляции. Так андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм, что обеспечивает высокую эффективность нейрогуморальной регуляции, ставит ее во главе систем, согласующих все процессы жизнедеятельности в многоклеточном организме. Регуляция постоянства внутренней среды организма, происходящая по принципу обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стеройдные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т. д. должна существовать связь между эндокринными железами и нервной системой.


1. 1 Краткая характеристика системы

Автономная нервная система пронизывает все наше тело подобно тончайшей паутине. У нее есть две ветви: возбуждения и торможения. Симпатическая нервная система – это возбуждающая часть, она приводит нас в состояние готовности столкнуться с вызовом или опасностью. Нервные окончания выделяют медиаторы, стимулирующие надпочечники к выделению сильных гормонов – адреналина и норадреналина. Они в свою очередь повышают частоту сердечных сокращений и частоту дыхания, и действуют на процесс пищеварения посредством выделения кислоты в желудке. При этом возникает сосущее ощущение под ложечкой. Парасимпатические нервные окончания выделяют другие медиаторы, снижающие пульс и частоту дыхания. Парасимпатические реакции – это расслабление и восстановление баланса.

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции, входящие в состав эндокринной системы. Это гипофиз с его независимо функционирующими передней и задней долями, половые железы, щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелудочной железы и секреторные клетки, выстилающие кишечный тракт. Все вместе взятые они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться миллиардными долями грамма. И, тем не менее, сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание. Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера выступает главная верховная железа внутренней секреции – гипофиз. Передняя доля гипофиза выделяет в кровь шесть тропных гормонов: соматотропный, адренокортикотропный, тиреотропный, пролактин, фолликулостимулирующий и лютеинизирующий – они направляют и регулируют деятельность других желез внутренней секреции.

1. 2 Взаимодействие эндокринной и нервной системы

Гипофиз может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем, для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельность организма, должно осуществятся приспособление тела к меняющимся внешним условиям. О внешних воздействиях организм узнает через органы чувств, которые передают полученную информацию в центральную нервную систему. Являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей – словом существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей подчиненных ему.

и обогащается там гипоталамическими нейрогормонами. Нейрогормоны - это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона - пролактостатин, меланостатин и соматостатин,- напротив, тормозят их выработку. К нейрогормонам относят также вазопрессин и окситоцин. Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Продуцируют нейрогормоны нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стердогенеза но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т. д. Также некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона. Некоторые вещества действуют в обеих системах; они могут быть и гормонами (т. е. продуктами эндокринных желез), и медиаторами (продуктами определенных нейронов). Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке «руководящие» гормоны. Они и сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона. Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания.


ГЛАВА 2. ОСНОВНЫЕ ФУНКЦИИ ТАЛАМУСА

2. 1 Краткая анатомия

Основную массу промежуточного мозга (20г) составляет таламус. Парный орган яйцевидной формы, передняя часть которого заострена (передний бугорок), а задняя расширенная (подушка) нависает над коленчатыми телами. Левый и правый таламусы соединены межталамической спайкой. Серое вещество таламуса разделено пластинками белого вещества на переднюю, медиальную и латеральную части. Говоря о таламусе, включают также метаталамус (коленчатые тела), принадлежащий к таламической области. Таламус наиболее развит у человека. Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

ганглиев головного мозга. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интерорецепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвует в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма. В целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер).

2. 3 Функции ядер таламуса

долю коры. Латеральная - в теменную, височную, затылочную доли коры. Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

2. 3. 1 Специфические сенсорные и несенсорные ядра

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

В свою очередь специфические (релейные) ядра делятся на сенсорные и несенсорные. От специфических сенсорных ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию. В медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.

ядер проецируются в лимбическую кору, откуда аксонные связи идут к гиппокампу и опять к гипоталамусу, в результате чего образуется нейронный круг, движение возбуждения по которому обеспечивает формирование эмоций («эмоциональное кольцо Пейпеца»). В связи с этим передние ядра таламуса рассматриваются как часть лимбической системы. Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В этих ядрах переключается импульсация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в моторную и премоторную кору. Через эти ядра таламуса происходит передача в моторную кору сложных двигательных программ, образованных в мозжечке и базальных ганглиях.

2. 3. 2 Неспецифические ядра

нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя диффузные связи. К неспецифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Благодаря этим связям неспецифические ядра таламуса выступают в роли посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями, с другой стороны, объединяя их в единый функциональный комплекс.

2. 3. 3 Ассоциативные ядра

мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. Подушка явлений), речевых и зрительных функциях (интеграция слова со зрительным образом), а также в восприятии «схемы тела». получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную лобную и лимбическую кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности. Латеральные ядра получают зрительную и слуховую импульсацию от коленчатых тел и соматосенсорную импульсацию от вентрального ядра.

Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.


ГЛАВА 3. СОСТАВ ЛИМБИЧЕСКОЙ СИСТЕМЫ И ЕЕ НАЗНАЧЕНИЕ

Структуры лимбической системы включают в себя 3 комплекса. Первый комплекс - древняя кора, обонятельные луковицы, обонятельный бугорок, прозрачная перегородка. Вторым комплексом структур лимбической системы является старая кора, куда входят гиппокамп, зубчатая фасция, поясная извилина. Третий комплекс лимбической системы - структуры островковой коры, парагиппокамповая извилина. И подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, переднее таламическое ядро, сосцевидные тела. Гиппокамп и другие структуры лимбической системы окружает поясная извилина. Около нее расположен свод - система волокон, идущих в обоих направлениях; он повторяет изгиб поясной извилины и соединяет гиппокамп с гипоталамусом. Все многочисленные формирования лимбической коры кольцеобразно охватывают основание переднего мозга и являются своеобразной границей между новой корой и стволовой частью мозга.

3. 2 Морфофункциональная организация системы

представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения, таких как пищевой, половой, оборонительный инстинкты. Эта система участвует в организации цикла бодрствование-сон.

циркулирования одного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга. В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеца (гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп). Этот круг имеет отношение к памяти и процессам обучения.

Другой круг (миндалевидное тело – мамиллярные тела гипоталамуса – лимбическая область среднего мозга - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения. Считается, что образная (иконическая) память формируется кортико-лимбико-таламо-кортикальным кругом. Круги разного функционального назначения связывают лимбическую систему со многими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой. Например, включение хвостатого ядра в один из кругов лимбической системы определяет ее участие в организации тормозных процессов высшей нервной деятельности.

Большое количество связей в лимбической системе, своеобразное круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, с одной стороны, обеспечивает функциональное взаимодействие частей лимбической системы, с другой - создает условия для запоминания.


3. 3 Функции лимбической системы

Обилие связей лимбической системы со структурами центральной нервной системы затрудняет выделение функций мозга, в которых она не принимала бы участия. Так, лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационной деятельности, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система определяет выбор и реализацию адаптационных форм поведения, динамику врожденных форм поведения, поддержание гомеостаза, генеративных процессов. Наконец, она обеспечивает создание эмоционального фона, формирование и реализацию процессов высшей нервной деятельности. Нужно отметить, что древняя и старая кора лимбической системы имеет прямое отношение к обонятельной функции. В свою очередь обонятельный анализатор, как самый древний из анализаторов, является неспецифическим активатором всех видов деятельности коры большого мозга. Некоторые авторы называют лимбическую систему висцеральным мозгом, т. е. структурой ЦНС, участвующей в регуляции деятельности внутренних органов.

Эта функция осуществляется преимущественно через деятельность гипоталамуса, который является диэнцефалическим звеном лимбической системы. О тесных эфферентных связях системы с внутренними органами свидетельствуют разнообразные изменения их функций при раздражении лимбических структур, особенно миндалин. При этом эффекты имеют различный знак в виде активации или угнетения висцеральных функций. Происходит повышение или понижение частоты сердечных сокращений, моторики и секреции желудка и кишечника, секреции различных гормонов аденогипофизом (аденокортикотропинов и гонадотропинов).


3. 3. 2 Формирование эмоций

Эмоции – это переживания, в которых отражается субъективное отношение человека к предметам внешнего мира и результатам собственной деятельности. В свою очередь, эмоции являются субъективным компонентом мотиваций – состояний, запускающих и реализующих поведение, направленное на удовлетворение возникших потребностей. Через механизм эмоций лимбическая система улучшает приспособление организма к изменяющимся условиям среды. Гипоталамус является критической зоной для возникновения эмоций. В структуре эмоций выделяют собственно эмоциональные переживания и его периферические (вегетативные и соматические) проявления. Эти компоненты эмоций могут иметь относительную самостоятельность. Выраженные субъективные переживания могут сопровождаться небольшими периферическими проявлениями и наоборот. Гипоталамус является структурой, ответственной преимущественно за вегетативные проявления эмоций. Кроме гипоталамуса к структурам лимбической системы, наиболее тесно связанным с эмоциями, принадлежат поясная извилина и миндалина.

с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения. Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем. Приводит к понижению (редко к повышению) кровяного давления, замедлению сердечного ритма, нарушению проведения возбуждения по проводящей системе сердца, возникновению аритмии и экстрасистолии. При этом сосудистый тонус может не изменяться. Раздражение ядер миндалины вызывает угнетение дыхания, иногда кашлевую реакцию. Предполагается, что такие состояния, как аутизм, депрессия, посттравматический шок и фобии, связаны с ненормальным функционированием миндалины. Поясная извилина имеет многочисленные связи с новой корой и со стволовыми центрами. И играет роль главного интегратора различных систем мозга, формирующих эмоции. Ее функции - обеспечение внимания, ощущение боли, констатация ошибки, передача сигналов от дыхательной и сердечно-сосудистой систем. Вентральная лобная кора имеет выраженные связи с миндалиной. Поражение коры вызывает резкие нарушения эмоций у человека, характеризующиеся возникновением эмоциональной тупости и растормаживанием эмоций, связанных с удовлетворением биологических потребностей.

3. 3. 3 Формирование памяти и осуществление обучения

Эта функция связана с основным кругом Пейпеца. При однократном обучении большую роль играем миндалина благодаря ее свойству индуцировать сильные отрицательные эмоции, способствуя быстрому и прочному формированию временной связи. Среди структур лимбической системы, ответственных за память и обучение, большую роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность совершенно необходима для консолидации памяти – перехода кратковременной памяти в долговременную.

Эндокринная система играет чрезвычайно важную роль в нашем организме. Если нарушается функция внутренней секреции одной из желез, то это вызывает определенные изменения и в других. Нервная и эндокринная системы осуществляют координацию и регуляцию функций всех других систем и органов, обеспечивают единство организма. У человека может происходить поражение нервной системы при эндокринной патологии.

Какие эндокринные патологии вызывают поражение нервной системы

К неврологическим нарушениям почти у половины больных приводит сахарный диабет. Тяжесть и частота таких поражений нервной системы зависят от длительности течения, уровня сахара в крови, частоты декомпенсации и типа диабета. Сосудистые и метаболические нарушения имеют основное значение в возникновении и развитии болезненного процесса в организме. Фруктоза и сорбитол обладают осмотической (просачивающейся) активностью. Накопление их сопровождается дистрофическими изменениями и отеками в тканях. Помимо этого при диабете заметно нарушается метаболизм белков, жиров, фосфолипидов, водно-электролитный обмен, а также развивается дефицит витаминов. Поражение нервной системы включает разнообразные психопатоподобные и невротические изменения, которые вызывают депрессию у больных. Типичной является полиневропатия. В начальных стадиях она проявляется болезненными судорогами ног (преимущественно ночью), парестезиями (онемением). В развитой стадии характерными являются выраженные трофические и вегетативные расстройства, которые преобладают в стопах ног. Возможно и поражение черепных нервов. Чаще всего глазодвигательного и лицевого.

Гипотиреоз (или микседема) может вызвать широкое поражение нервной системы при сосудистых и метаболических нарушениях. При этом происходит замедленность внимания и мышления, наблюдается повышенная сонливость, депрессия. Реже врачи диагностируют мозжечковую атаксию, которая обуславливается атрофическим процессом в мозжечке, миопатический синдром (болезненность при пальпации и движении мышц, псевдогипертрофия икроножных мышц), миотонический синдром (при сильном сжатии кистей рук отсутствует расслабление мышц). Наряду с микседемой у 10% больных развиваются мононевропатии (в особенности синдром запястного канала). Эти явления уменьшаются (или совсем исчезают) при заместительной гормонотерапии.

Гипертиреоз чаще всего в неврологической практике проявляется паническими атаками, возникновением (или учащением) приступов мигрени, психотическими нарушениями.

Гипопаратиреоз сопровождается гиперфосфатемией и гипокальциемией. При этой эндокринной патологии в нервной системе человека отмечаются симптомы вегетативной полиневропатии, повышение мышечно-нервной системы. Происходит снижение когнитивных (мозговых) функций: снижение памяти, неадекватное поведение, расстройства речи. Могут случиться и эпилептические припадки.

Гиперпаратиреоз за счет гипофосфатемии и гиперкальциемии также приводит к поражению нервной системы. У таких больных отмечаются сильная слабость, снижение памяти, повышенная мышечная утомляемость.

В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную . Соматическая нервная система регулирует произвольные движения скелетной мускулатуры и обеспечивает чувствительность. Вегетативная нервная система координирует деятельность внутренних органов, желез, сердечно-сосудистой системы и осуществляет иннервацию всех обменных процессов в теле человека. Работа этой регуляторной системы не подконтрольна сознанию и осуществляется благодаря слаженной работе двух ее отделов: симпатического и парасимпатического. В большинстве случаев активация этих отделов имеет противоположный эффект. Симпатическое влияние наиболее ярко проявляется в том случае, когда организм находится в состоянии стресса или интенсивной работы. Симпатическая нервная система – это система тревоги и мобилизации резервов, необходимых для защиты организма от воздействий внешней среды. Она подает сигналы, которые активируют деятельность мозга и мобилизуют защитные реакции (процесс терморегуляции, иммунные реакции, механизмы свертывания крови). При активации симпатической нервной системы увеличивается частота сердечных сокращений, замедляются процессы пищеварения, увеличивается частота дыхания и усиливается газообмен, увеличивается концентрация глюкозы и жирных кислот в крови за счет выделения их печенью и жировой тканью (рис.5).

Парасимпатический отдел вегетативной нервной системы регулирует работу внутренних органов в состоянии покоя, т.е. это система текущей регуляции физиологических процессов в организме. Преобладание активности парасимпатической части вегетативной нервной системы создает условия для отдыха и восстановления функций организма. При ее активации снижается частота и сила сердечных сокращений, стимулируются процессы пищеварения, уменьшается просвет дыхательных путей (рис.5). Все внутренние органы иннервируются как симпатическим, так и парасимпатическим отделами автономной нервной системы. Кожа и опорно-двигательный аппарат имеет только симпатическую иннервацию.

Рис.5. Регуляция различных физиологических процессов человеческого организма под действием симпатического и парасимпатического отделов вегетативной нервной системы

Вегетативная нервная система обладает сенсорным (чувствительным) компонентом, представленным рецепторами (чувствительным устройствами), располагающимися во внутренних органах. Эти рецепторы воспринимают показатели состояния внутренней среды организма (например, концентрацию углекислого газа, давление, концентрацию питательных веществ в кровеносном русле) и передают эту информацию по центростремительным нервным волокнам в центральную нервную систему, где эта информация обрабатывается. В ответ на полученную информацию от центральной нервной системы по центробежным нервным волокнам передаются сигналы к соответствующим рабочим органам, участвующим в поддержании гомеостаза.

Эндокринная система также осуществляет регуляцию деятельности тканей и внутренних органов. Эта регуляция называется гуморальной и осуществляется с помощью специальных веществ (гормонов), которые выделяются эндокринными железами в кровь или тканевую жидкость. Гормоны – это специальные регулирующие вещества, вырабатываемые в одних тканях организма, транспортируемые с током крови к различным органам и воздействующие на их работу. В то время как обеспечивающие нервную регуляцию сигналы (нервные импульсы) распространяются с большой скоростью и для осуществления ответа со стороны вегетативной нервной системы требуются доли секунды, гуморальная регуляция осуществляется гораздо медленнее, и под ее контролем находятся те процессы нашего организма, которые требуют для регуляции минуты и часы. Гормоны являются сильнодействующими веществами и вызывают свой эффект в очень малых количествах. Каждый гормон влияет на определенные органы и системы органов, которые называются органами-мишенями . Клетки органов мишеней имеют специ-фические белки-рецепторы, которые избирательно взаимодействуют со специфическими гормона-ми. Образование комплекса гормона с белком-рецептором включает целую цепь биохимических реакций, обуславливающих физиологическое действие данного гормона. Концентрация большинства гормонов может изменяться в больших пределах, что обеспечивает поддержание постоянства многих физиологических параметров при непрерывно изменяющихся потребностях организма человека. Нервная и гуморальная регуляция в организме тесно взаимосвязаны и согласованы, что обеспечивает его приспособленность в условиях постоянно меняющейся окружающей среды.

Ведущую роль в гуморальной функциональной регуляции человеческого организма играют гормоны гипофиза и гипоталамуса. Гипофиз (нижний мозговой придаток) – это отдел головного мозга, относящийся к промежуточному мозгу, он прикреплен специальной ножкой к другому отделу промежуточного мозга, гипоталамусу, и находится с ним в тесной функциональной связи. Гипофиз состоит из трех частей: передней, средней и задней (рис.6). Гипоталамус является основным регулирующим центром вегетативной нервной системы, кроме того, этот отдел мозга содержит специальные нейросекреторные клетки, совмещающие свойства нервной клетки (нейрона) и секреторной клетки, синтезирующей гормоны. Однако в самом гипоталамусе эти гормоны в кровь не выделяются, а поступают в гипофиз, в его заднюю долю (нейрогипофиз) , где и выводятся в кровь. Один из этих гормонов, антидиуретический гормон (АДГ или вазопрессин ), преимущественно воздействует на почку и стенки кровеносных сосудов. Увеличение синтеза этого гормона происходит при значительных кровопотерях и других случаях потери жидкости. Под действием этого гормона уменьшается потеря жидкости организмом, кроме того, как и другие гормоны, АДГ воздействует и на функции мозга. Он является природным стимулятором обучения и памяти. Недостаток синтеза этого гормона в организме приводит к заболеванию, называемому несахарным диабетом, при котором резко увеличивается объем выделяемой больными мочи (до 20 л в сутки). Другой гормон, выделяемый в кровь в задней доли гипофиза, называется окситоцином. Мишенью для этого гормона являются гладкие мышцы матки, мышечные клетки, окружающие протоки молочных желез и семенников. Повышение синтеза этого гормона наблюдается в конце беременности и абсолютно необходимо для протекания родов. Окситоцин ухудшает обучение и память. Передняя доля гипофиза (аденогипофиз ) является эндокринной железой и выделяет в кровь ряд гормонов, которые регулируют функции других эндокринных желез (щитовидной железы, надпочечников, половых желез) и называются тропными гормонами . Например, аденокортикотропный гормон (АКТГ) воздействует на кору надпочечников и под его воздействием в кровь выбрасывается целый ряд стероидных гормонов. Тиреотропный гормон стимулирует работы щитовидной железы. Соматотропный гормон (или гормон роста) воздействует на кости, мышцы, сухожилия, внутренние органы, стимулируя их рост. В нейросекреторных клетках гипоталамуса синтезируются особые факторы, влияющие на работу передней доли гипофиза. Часть этих факторов называются либеринами , они стимулируют секрецию гормонов клетками аденогипофиза. Другие факторы, статины, тормозят секрецию соответствующих гормонов. Активность нейросекреторных клеток гипоталамуса изменяется под действием нервных импульсов, приходящих от периферических рецепторов и других отделов мозга. Таким образом, связь между нервной и гуморальной системами в первую очередь осуществляется на уровне гипоталамуса.

Рис.6. Схема головного мозга (а), гипоталамуса и гипофиза (б):

1 – гипоталамус, 2 – гипофиз; 3 – продолговатый мозг; 4 и 5 – нейросекреторные клетки гипоталамуса; 6 – ножка гипофиза; 7 и 12 – отростки (аксоны) нейросекреторных клеток;
8 – задняя доля гипофиза (нейрогипофиз), 9 – промежуточная доля гипофиза, 10 – передняя доля гипофиха (аденогипофиз), 11 – срединное возвышение ножки гипофиза.

Кроме гипоталамо-гипофизарной системы, к эндокринным железам относятся щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелу-дочной железы, секреторные клетки кишечника, половые железы, некоторые клетки сердца.

Щитовидная железа – это единственный орган человека, который способен активно поглощать йод и включать его в биологически активные молекулы, тиреоидные гормоны . Эти гормоны влияют практически на все клетки организма человека, основные их эффекты связаны с регуляцией процессов роста и развития, а также обменных процессов в организме. Гормоны щитовидной железы стимулируют рост и развитие всех систем организма, а особенно нервной системы. При недостаточном функционировании щитовидной железы у взрослых развивается заболевание, которое называется микседема. Ее симптомами являются снижение обмена веществ и нарушение функций нервной системы: замедляется реакция на раздражители, повышается утомляемость, падает температура тела, развиваются отеки, страдает желудочно-кишечный тракт и др. Снижение уровня тиреоидов у новорожденных сопровождается более тяжелыми последствиями и приводит к кретинизму , задержке умственного развития вплоть до полной идиотии. Раньше микседема и кретинизм часто встречались в горных районах, где в ледниковой воде мало йода. Сейчас эту проблему легко решают добавлением натриевой соли йода в поваренную соль. Усиление функционирования щитовидной железы приводит к нарушению, которое называется базедовой болезнью . У таких больных повышается основной обмен, нарушается сон, повышается температура, учащается дыхание и сердцебиение. У многих больных возникает пучеглазие, иногда образуется зоб.

Надпочечники – парные железы, расположенные на полюсах почек. В каждом надпочечнике выделяют два слоя: корковый и мозговой. Эти слои совершенно различны по своему происхож-дению. Наружный корковый слой развивается из среднего зародышевого листка (мезодермы), мозговой слой является видоизмененным узлом вегетативной нервной системы. В коре надпочеч-ников вырабатываются кортикостероидные гормоны (кортикоиды ). Эти гормоны обладают широким спектром действия: влияют на водно-солевой обмен, жировой и углеводный обмены, на иммунные свойства организма, подавляют воспалительные реакции. Один из основных кортикоидов, кортизол , необходим для создания реакции на сильные раздражители, приводящие к развитию стресса.Стресс можно определить как угрожающую ситуацию, развивающуюся под воздействием боли, кровопотери, страха. Кортизол препятствует кровопотере, сужает мелкие артериальные сосуды, усиливает сократительную способность сердечной мышцы. При разрушении клеток коры надпочечников развивается Аддисонова болезнь . У больных наблюдается бронзовый оттенок кожи на некоторых участках тела, развивается мышечная слабость, снижение массы тела, страдает память и умственные способности. Раньше наиболее распространенной причиной возникновения Аддисоновой болезни был туберкулез, в настоящее время это аутоиммунные реакции (ошибочная выработка антител к своим собственным молекулам).

В мозговом веществе надпочечников синтезируются гормоны: адреналин и норадреналин . Мишенями этих гормонов являются все ткани организма. Адреналин и норадреналин призваны мобилизовать все силы человека в случае ситуации, требующей большого физического или умственного напряжения, при травме, инфекции, испуге. Под их влиянием увеличивается частота и сила сердечных сокращений, повышается кровяное давление, учащается дыхание и расширяются бронхи, повышается возбудимость структур головного мозга.

Поджелудочная железа является железой смешанного типа, она выполняет как пищевари-тельные (выработка панкриотического сока), так и эндокринные функции. Она вырабатывает гормоны, регулирующие углеводный обмен в организме. Гормон инсулин стимулирует поступле-ние глюкозы и аминокислот из крови в клетки различных тканей, а также образование в печени из глюкозы основного запасного полисахарида нашего организма, гликогена . Другой гормон подже-лудочной железы, глюкогон , по своим биологическим эффектам является антагонистом инсулина, повышая содержание глюкозы в крови. Глюкогон стимулирует распад гликогена в печени. При недостатке инсулина развивается сахарный диабет, поступившая с пищей глюкоза не поглоща-ется тканями, накапливается в крови и выводится из организма с мочой, в то время как тканям катастрофически не хватает глюкозы. Особенно сильно страдает нервная ткань: нарушается чувствительность периферических нервов, возникает ощущение тяжести в конечностях, возможны судороги. В тяжелых случаях может возникать диабетическая кома и смерть.

Нервная и гуморальная системы, работая совместно, возбуждают или затормаживают различ-ные физиологические функции, что сводит к минимуму отклонения отдельных параметров внут-ренней среды. Относительное постоянство внутренней среды обеспечивается у человека путем регуляции деятельности сердечно-сосудистой, дыхательной, пищеварительной, выделительной систем, потовых желез. Регуляторные механизмы обеспечивают постоянство химического состава, осмотического давления, числа форменных элементов крови и т.д. Весьма совершенные механизмы обеспечивают поддержание постоянной температуры тела человека (терморегуляцию).

ГЛАВА 1. ВЗАИМОДЕЙСТВИЕ НЕРВНОЙ И ЭНДОКРИННОЙ СИСТЕМЫ

Тело человека состоит из клеток, соединяющихся в ткани и системы - все это в целом представляет собой единую сверхсистему организма. Мириады клеточных элементов не смогли бы работать как единое целое, если бы в организме не существовал сложный механизм регуляции. Особую роль в регуляции играет нервная система и система эндокринных желез. Характер процессов, протекающих в центральной нервной системе, во многом определяется состоянием эндокринной регуляции. Так андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм, что обеспечивает высокую эффективность нейрогуморальной регуляции, ставит ее во главе систем, согласующих все процессы жизнедеятельности в многоклеточном организме. Регуляция постоянства внутренней среды организма, происходящая по принципу обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стеройдные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т.п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т.д. должна существовать связь между эндокринными железами и нервной системой.


1.1 Краткая характеристика системы

Автономная нервная система пронизывает все наше тело подобно тончайшей паутине. У нее есть две ветви: возбуждения и торможения. Симпатическая нервная система – это возбуждающая часть, она приводит нас в состояние готовности столкнуться с вызовом или опасностью. Нервные окончания выделяют медиаторы, стимулирующие надпочечники к выделению сильных гормонов – адреналина и норадреналина. Они в свою очередь повышают частоту сердечных сокращений и частоту дыхания, и действуют на процесс пищеварения посредством выделения кислоты в желудке. При этом возникает сосущее ощущение под ложечкой. Парасимпатические нервные окончания выделяют другие медиаторы, снижающие пульс и частоту дыхания. Парасимпатические реакции – это расслабление и восстановление баланса.

Эндокринная система организма человека объединяет небольшие по величине и различные по своему строению и функциям железы внутренней секреции, входящие в состав эндокринной системы. Это гипофиз с его независимо функционирующими передней и задней долями, половые железы, щитовидная и паращитовидные железы, кора и мозговой слой надпочечников, островковые клетки поджелудочной железы и секреторные клетки, выстилающие кишечный тракт. Все вместе взятые они весят не более 100 граммов, а количество вырабатываемых ими гормонов может исчисляться миллиардными долями грамма. И, тем не менее, сфера влияния гормонов исключительно велика. Они оказывают прямое воздействие на рост и развитие организма, на все виды обмена веществ, на половое созревание. Между железами внутренней секреции нет прямых анатомических связей, но существует взаимозависимость функций одной железы от других. Эндокринную систему здорового человека можно сравнить с хорошо сыгранным оркестром, в котором каждая железа уверенно и тонко ведет свою партию. А в роли дирижера выступает главная верховная железа внутренней секреции – гипофиз. Передняя доля гипофиза выделяет в кровь шесть тропных гормонов: соматотропный, адренокортикотропный, тиреотропный, пролактин, фолликулостимулирующий и лютеинизирующий – они направляют и регулируют деятельность других желез внутренней секреции.

1.2 Взаимодействие эндокринной и нервной системы

Гипофиз может получать сигналы, оповещающие о том, что происходит в теле, но он не имеет прямой связи с внешней средой. Между тем, для того, чтобы факторы внешней среды постоянно не нарушали жизнедеятельность организма, должно осуществятся приспособление тела к меняющимся внешним условиям. О внешних воздействиях организм узнает через органы чувств, которые передают полученную информацию в центральную нервную систему. Являясь верховной железой эндокринной системы, гипофиз сам подчиняется центральной нервной системе и в частности гипоталамусу. Этот высший вегетативный центр постоянно координирует, регулирует деятельность различных отделов мозга, всех внутренних органов. Частота сердечных сокращений, тонус кровеносных сосудов, температура тела, количество воды в крови и тканях, накопление или расход белков, жиров, углеводов, минеральных солей – словом существование нашего организма, постоянство его внутренней среды находится под контролем гипоталамуса. Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей подчиненных ему.

Гипоталамус руководит гипофизом, используя и нервные связи, и систему кровеносных сосудов. Кровь, которая поступает в переднюю долю гипофиза, обязательно проходит через серединное возвышение гипоталамуса и обогащается там гипоталамическими нейрогормонами. Нейрогормоны - это вещества пептидной природы, которые представляют собой части белковых молекул. К настоящему времени обнаружено семь нейрогормонов, так называемых либеринов (то есть освободителей), которые стимулируют в гипофизе синтез тропных гормонов. А три нейрогормона - пролактостатин, меланостатин и соматостатин,- напротив, тормозят их выработку. К нейрогормонам относят также вазопрессин и окситоцин. Окситоцин стимулирует сокращение гладкой мускулатуры матки при родах, выработку молока молочными железами. Вазопрессин активно участвует в регуляции транспорта воды и солей через клеточные мембраны, под его влиянием уменьшается просвет кровеносных сосудов и, следовательно, повышается давление крови. За то, что этот гормон обладает способностью задерживать воду в организме, его часто называют антидиуретическим гормоном (АДГ). Главной точкой приложения АДГ являются почечные канальцы, где он стимулирует обратное всасывание воды из первичной мочи в кровь. Продуцируют нейрогормоны нервные клетки ядер гипоталамуса, а затем по собственным аксонам (нервным отросткам) транспортируют в заднюю долю гипофиза, и уже отсюда эти гормоны поступают в кровь, оказывая сложное воздействие на системы организма.

Тропины образующиеся в гипофизе не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стердогенеза но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, сахаров и т.д. Также некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона. Некоторые вещества действуют в обеих системах; они могут быть и гормонами (т.е. продуктами эндокринных желез), и медиаторами (продуктами определенных нейронов). Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Однако не следует думать, что гипоталамус и гипофиз лишь отдают приказы, спуская по цепочке «руководящие» гормоны. Они и сами чутко анализируют сигналы, поступающие с периферии, от желез внутренней секреции. Деятельность эндокринной системы осуществляется на основе универсального принципа обратной связи. Избыток гормонов той или иной железы внутренней секреции тормозит выделение специфического гормона гипофиза, ответственного за работу данной железы, а недостаток побуждает гипофиз усилить выработку соответствующего тройного гормона. Механизм взаимодействия между нейрогормонами гипоталамуса, тройными гормонами гипофиза и гормонами периферических желез внутренней секреции в здоровом организме отработан длительным эволюционным развитием и весьма надежен. Однако достаточно сбоя в одном звене этой сложной цепи, чтобы произошло нарушение количественных, а порой и качественных соотношений в целой системе, влекущее за собой различные эндокринные заболевания.


ГЛАВА 2. ОСНОВНЫЕ ФУНКЦИИ ТАЛАМУСА


... – нейроэндокринология – изучает взаимодействие нервной системы и эндокринных желёз в регуляции функций организма. Клиническая эндокринология как раздел клинической медицины изучает заболевания эндокринной системы (их эпидемиологию, этиологию, патогенез, клинику, лечение и профилактику), а также изменения желез внутренней секреции при других заболеваниях. Современные методы исследования позволяют...

Лептоспироз и др.) и вторичными (вертеброгенные, после детских экзантемных инфекций, инфекционного мононуклеоза, при узелковом периартериите, ревматизме и др.). По патогенезу и патоморфологии заболевания периферической нервной системы подразделяются на невриты (радикулиты), невропатии (радикулопатии) и невралгии. Невриты (радикулиты) – воспаление периферических нервов и корешков. По характеру...