Герконовые датчики уровня воды для автоматического управления насосом. Электросхема насосных станций Схема управления погружным насосом строительный портал

Надёжное водоснабжение – неотъемлемая часть жилого дома, общественного здания, производственного помещения. Но вопросы водоотведения важны не меньше. Чтобы поддерживать надлежащий уровень комфорта на объекте и повысить долговечность строительных конструкций, необходимо выполнять аварийную откачку воды, а также в любых условиях обеспечивать работоспособность системы дренажа и канализации, не допуская подтоплений и переливов. Именно для этого трудятся «бойцы невидимого фронта» – фекальные и дренажные насосы, которые самостоятельно работают где-то на приусадебном участке или в недрах подсобных помещений. Автоматика для дренажного насоса делает оборудование по-настоящему практичным и максимально эффективным.

Дренажный насос ещё называют «насосом для грязной воды», так как он может перекачивать жидкости, содержащие большое количество твёрдых частиц. В поверхностном или погружном исполнении это оборудование незаменимо для перекачки воды из резервуаров, которые нуждаются в поддержании «уровня»: котлованов, приямков, скважин, аккумулирующих ёмкостей, коллекторов, крупных сточных труб, сливных ям и т.д.

Каскад из двух насосов с поплавковыми выключателями и пультом управления

Такие приборы помогут защитить уязвимые помещения, которые периодически подвергаются затоплению (подвалы, погреба, цокольные этажи). Также дренажные насосы применяют для обслуживания (чистить, отводить лишнюю воду) искусственных водоёмов с грунтовым дном, они позволяют без проблем качать воду для полива сельхозугодий из естественных источников – рек и озёр.

Важно! Способность нагнетать и транспортировать жидкости с механическими включениями вовсе не означает, что дренажный насос не будет качать чистую воду. Нередко его используют для заполнения накопительных ёмкостей, например при реализации двухступенчатой автономной системы водоснабжения коттеджа.

Основные функции автоматики

Главная задача автоматики для дренажных насосов – включать и отключать насос при достижении заданных условий, благодаря чему появляется возможность не просто принудительно осушать и набирать ёмкости, а поддерживать необходимый безопасный уровень жидкости без участия домовладельца.

Насосы – дорогостоящие устройства. Они «не любят» работать без воды, которая, будучи перекачиваемой рабочей средой, также играет немаловажную роль в смазке некоторых движущиеся частей и охлаждении оборудования. Сухой ход для дренажного насоса так же вреден, как и для любого другого прибора. Практика показывает, что невозможно быть на сто процентов уверенным, что этого не случится, даже если уровень в источнике/резервуаре активно восполняется. Избежать таких ситуаций позволяет автоматика, которая в нужный момент отключает питание.

Вариант комплектации станции управления дренажным насосом

Автоматика для дренажного насоса – не просто выключатель. Её нужно рассматривать как сложное многокомпонентное устройство, так называемый «пульт управления», который помимо прочего защищает силовое оборудование от:

  • короткого замыкания;
  • перепада напряжения (от повышенного и слишком низкого);
  • тока утечки (в том числе человека от поражения током);
  • обрывов фазного провода и перекоса фаз (для устройств на 380 вольт);
  • повышения силы тока (при заклинивании рабочих колёс);
  • подгорания/залипания контактов и клемм.

В продаже имеются полностью готовые пульты, к которым нужно только подсоединить необходимые датчики и произвести программирование. При наличии опыта можно и самим на DIN-рейке отдельного щитка собрать функциональный управляющий блок.

Важно! Устройства, контролирующие работу дренажных насосов, позволяют включать/выключать и другие электрозависимые приборы, например ТЭНы, а также при помощи звукового зуммера или лампы сигнализировать о состоянии оборудования и аварийных ситуациях.

Как автоматизировать работу дренажного насоса

Управление дренажным насосным оборудованием всегда осуществляется по изменению уровня жидкости. Есть несколько вариантов устройств, но все они функционируют путём подачи или отключения питания (цепь разрывается или замыкается). Рассмотрим самые распространённые решения для дренажных приборов.

Способы применения поплавковых выключателей

Универсальное устройство, которое позволяет управлять насосами, когда необходимо откачивать жидкость или наполнять резервуары. Поплавковый выключатель представляет собой небольшой герметичный бокс из пластика со стационарно подсоединённым трёх- или четырёхжильным кабелем длиной до 10 метров. Именно таким типом автоматики снабжены простые бытовые насосы, но «поплавок» можно купить и отдельно.

Устанавливают поплавковый выключатель погружением в перекачиваемую жидкость, его прикрепляют к стенке ёмкости или фиксируют на силовом кабеле насоса. Чтобы более точно выставить диапазон рабочего уровня, на провод выключателя надевается и фиксируется скользящий груз. Меняя длину кабеля между выключателем и огрузкой, устанавливают оптимальные моменты срабатывания поплавка.

По сути, поплавковый выключатель является одновременно датчиком уровня и коммутирующим устройством. Работает он очень просто. Внутри корпуса с положительной плавучестью по специальному каналу свободно движется металлический шарик. При поднятии/опускании поплавка под углом около 45 градусов шар уходит в крайнее положение и ударяет по клавише двухпозиционного микровыключателя, который, в свою очередь, запитывает цепь, либо разрывает её.

Важно! Автоматика для дренажного насоса с микровыключателем в поплавке является недорогим решением, однако она не может обеспечить высокую точность контроля уровня. Кроме того, поплавковый выключатель не позволяет полностью осушать резервуары. Также ему свойственны проблемы с залипанием контактов, что, впрочем, решается применением вспомогательного контактора.

Схема устройства автоматики с тремя кондуктометрическими датчиками

Кондуктометрические датчики уровня

Принцип работы такой системы управления основан на электропроводности перекачиваемых жидкостей. Электроды из нержавеющей стали погружают в воду. Один из них, контрольный, должен всегда находиться в воде, а другие, сигнальные, монтируют на своих уровнях. Между ними по рабочей среде постоянно передаются малые токи. Если вода достигает нижнего сигнального датчика, то между ним и контрольным электродом появляется прослойка из воздуха (который не проводит электричество), что сразу же улавливает управляющий блок. А когда вода поднимается до верхнего датчика, воздух, наоборот, вытесняется жидкостью, и сигнальная цепь замыкается.

Важно! В качестве контрольного электрода может использоваться металлическая стенка резервуара или заземлённый корпус насоса.

Если поплавки могут работать как с пультом, так и самостоятельно, то такая автоматика обязательно комплектуется выносным блоком управления. Именно к нему поступают сигналы о состоянии слаботочных цепей внутри резервуара, а затем уже контролер отдаёт команду на срабатывание коммутирующего устройства (например, магнитного пускателя) для включения/выключения насоса. Кстати, многоэлектродные датчики могут управлять несколькими насосами, срабатывающими одновременно или поочерёдно, в том числе установленными в разных резервуарах.

В системе могут использоваться кондуктометрические датчики с несколькими электродами (для отслеживания большого количества уровней), но также возможны конфигурации, где функционирует только один электрод. Такая вариативность позволяет собрать автоматику для дренажного насоса своими руками, которая будет наиболее эффективной для конкретных условий. В любом случае кондуктометрические устройства управления надёжнее и намного точнее, чем системы контроля с поплавковыми выключателями.

Видео: автоматика для насоса

Недавно наткнулся в интернете на один видеоролик, где воплотили мою детскую мечту в реальность На видео продемонстрировали, как можно собрать устройство автоматического наполнения емкости водой. Всю работу очень наглядно продемонстрировали, однако схему не показали.

Дело в том, что в детстве в летнее время мне часто приходилось поливать огород и у меня всегда появлялись идеи по автоматизации данного процесса, но воплотить в реальность свои мысли так и не получилось. Сегодня я исполню часть своей мечты, правда, пока только теоретически.

Представим такую ситуацию: у вас на даче или дома есть емкость с водой, для полива огорода или еще для каких-то целей. В эту емкость вы закачиваете воду с помощью насоса. Чтобы закачать воду, каждый раз приходится включать насос и следить пока емкость не заполнится водой. Заполнение емкости водой можно очень легко и достаточно дешево автоматизировать.

Ниже представлена структурная картинка нашего устройства.

Для автоматизации наполнения емкости водой нам придется немного доработать емкость. На верхней части бочки устанавливается стержень высотой не менее глубины емкости, на котором закрепляются два геркона. К стержню также крепится подвижный шток с поплавком, который перемещается в зависимости от уровня воды в емкости. На штоке закреплен постоянный магнит, для управления герконами.

На следующей картинке можно увидеть пример выполнения стержня и подвижного штока.

А сейчас самое интересное: схема автоматического наполнения емкости водой.

Для реализации данного устройства нам понадобится автоматический выключатель для защиты насоса, электромагнитный контактор для включения и отключения насоса и два геркона (контакт магнитоуправляемый герметизированный) для управления контактором.

Нижний геркон должен быть замыкающий, верхний – размыкающий. К примеру, нам вполне подойдет геркон МКС-27103, т.к. он имеет переключающий контакт. Для сигнализации нижнего уровня в схеме используется нормально разомкнутый контакт, для сигнализации верхнего уровня – нормально замкнутый контакт геркона. В момент когда уровень воды в емкости достигнет критического значения, магнит расположится в одном уровне с нижним герконом, который под действием магнитного поля переключит контакт и тем самым отправит сигнал на включение насоса. После этого поплавок начнет подниматься до верхнего уровня, где верхний геркон отключит насос.

В данной схеме не реализован ручной режим, хотя следовало бы предусмотреть на случай выхода из строя наших уровнемеров. Проще всего взять кнопку с фиксацией для ручного управления насосом. Я думаю, как включить кнопку в полученную схему, у вас не составит труда.

Разумеется можно купить готовые уровнемеры и не изобретать велосипед, тем боле что промышленностью они выпускаются. Однако, один такой уровнемер вам обойдется не менее 30$, а один геркон МКС-27103 стоит 2-3$.

Вот так можно сделать автоматическое наполнение емкости водой. Еще у меня идея была, чтобы с этой емкости вода уходила на полив (например помидоров, огурцов) через дренажные трубки. Возможно в теплицах так и делают.

Надеюсь и у меня когда-нибудь появится дача, где я смогу воплотить полностью свою мечту, не потому что я люблю в огороде копаться, просто я люблю, чтобы за меня другие работали, я имею ввиду устройства

Наличие проточной и питьевой воды - важнейшая составляющая комфортного проживания и отдыха за городом. В ситуации, когда центральное водоснабжение недоступно, единственным верным решением становится бурение скважины или колодца и последующая установка автоматического погружного насоса. Бесперебойное функционирование агрегата зависит от системы управления, которая собирается по разным схемам.

Управление погружным насосом - целесообразность автоматики

Для обустройства в загородном доме полнофункциональной системы водоснабжения необходима автоматизация процесса наполнения расходных емкостей. Управление насосом должно быть надежным в работе и простым по устройству.

Автоматизация насосной установки позволяет добиться бесперебойного и надежного водоснабжения, сократить эксплуатационные расходы и затраты труда, а также уменьшить объемы регулирующих резервуаров.

Для организации автоматической работы насоса кроме стандартной аппаратуры общего применения (магнитных пускателей, контакторов, промежуточных реле и переключателей) используют и специальные аппараты контроля/управления. К таким элементам относят:

  • струйные реле;
  • реле контроля уровня и заливки;
  • электродные реле уровня;
  • датчики емкостного типа;
  • различные манометры;
  • поплавковое реле и т.д.

Варианты управления погружным насосом

Можно выделить три вида приборов для управления погружным насосом:

  • блок управления в виде пульта;
  • прессконтроль;
  • автоматическое управление с механизмом поддержания постоянного давления воды в системе.

Первый вариант - простейший блок управления, способный защитить насос от перепадов напряжения и возможных коротких замыканий. Автоматический режим работы достигается подключением блока управления к реле уровня или реле давления. Иногда пульт управления подсоединяется к поплавковому выключателю. На подобный блок автоматики цена не превышает 4000-5000 рублей. Однако целесообразности использования такого управления без защиты насоса от сухого хода и реле давления нет.

Существуют блоки со встроенными системами, например, «Водолей 4000» стоимостью 4000-10000 р. Существенный плюс оборудования - простота монтажа. Установку возможно выполнить самостоятельно без привлечения специалистов.

Второй вариант - «прессконтроль» оснащен встроенными системами пассивной защиты от сухого хода и автоматизированной работы насоса. Управление базируется по ориентировке на ряд параметров, среди которых обязательно учитываются уровень протока и давления воды. Например, если расход воды выше 50 л/мин, то оборудование под корректировкой прессконтроля функционирует непрерывно. По мере уменьшения водяного потока/повышения давления срабатывает автоматика и прессконтроль отключает насос.

При расходовании жидкости менее 50 л/мин запуск насоса происходит со снижением давления в системе водоснабжения до 1,5 атмосфер. Эта функция особенно важна в условиях резкого скачка давления, когда требуется сократить количество включений/выключений устройства при минимальном расходе воды.

Удачные модели прессконтрольного оборудования: Brio-2000M и Водолей.

Третий вариант - блочное управление с поддержанием стабильного давления по всей системе. Это устройство целесообразно устанавливать там, где крайне нежелательны «скачки» давления.

Важно! Стабильно завышенные показатели давления увеличивают расход электроэнергии, при этом КПД насосного оборудования снижается

Шкаф управления погружным насосом: необходимость и функции

Шкаф управления - обязательный элемент автономной системы водоснабжения, работающий на базе насоса погружного типа. В нем интегрируются все управляющие, контрольные узлы и предохранительные блоки.

При помощи распределительного шкафа получится решить ряд задач:

  1. Обеспечение плавного, безопасного пуска электродвигателя насоса.
  2. Регулирование частотного преобразователя.
  3. Отслеживание эксплуатационных параметров автономного водоснабжения: температура воды, давление в трубах, уровень в скважине.
  4. Выравнивание характеристик тока, который подается на клеммы электродвигателя и регулирует частоту вращения насосного вала.

Шкаф управления, обслуживающий одновременно несколько агрегатов, имеет расширенный функционал:

  1. Контроль периодичности работы насосов. Блоки управления попеременно обеспечивают равномерный износ машинной части оборудования. Это увеличивает почти в два раза срок эксплуатации напорного оборудования.
  2. Отслеживание непрерывности работы агрегатов. Если один насос вышел из строя, то скважина продолжит выкачку воды на второй (резервной) линии.
  3. Контроль функциональности насосного оборудования. Во время простоя устройства предотвращается его заиливание.

Типовая комплектация шкафа управления

Распределительный шкаф для погружного насоса (водопроводного, дренажного, пожарного) состоит из следующих элементов:

  1. Корпус - металлическая коробка, рассчитанная для монтажа электротехнического оборудования.
  2. Лицевая панель - изготавливается на базе крышки корпуса, в которую встроены кнопки «Стоп»/«Пуск». На лицевой стороне монтируются индикаторы работы датчиков и насосов, а также реле переключения с ручного на автоматический режим.
  3. Блок контроля фаз состоит из трех датчиков, отслеживающих нагрузку по фазам. Устройство устанавливается около «входа» в аппаратную часть распределительного шкафа.
  4. Контрактор - переключатель, подающий электричество на клеммы насосной установки и отключающий агрегат от сети.
  5. Предохранитель - специальное реле, нивелирующее последствия короткого замыкания в системе. В случае замыкания перегорит плавкий элемент предохранителя, а не обмотка двигателя или содержимое шкафа.
  6. Блок управления - контролирует режим работы агрегата. Состоит из датчика отключения/включения насоса и датчика переполнения. Клеммы датчиков вводятся в гидробак и в скважину.
  7. Частотный преобразователь управляет оборотами вала асинхронного двигателя, сбрасывая и наращивая частоту вращения в момент выключения и старта насоса.
  8. Датчики давления и температуры подключаются к контрактору и блокируют запуск агрегата в ненадлежащих условиях эксплуатации - обледенении труб, повышении давлении и пр.

Подобная «начинка» шкафов управления принята за основу многими производителями. Но наряду с тем, некоторые компании внедряют в типовую схему инновационные решения, повышая конкурентоспособность продукта.

Обзор блоков управления разных производителей

Автоматическая станция «Каскад»

Станция управления погружным насосом «Каскад» предназначена для автоматического управления/защиты трехфазного электродвигателя агрегата, рассчитанного на 380 В. Станция представляет собой металлический шкаф, запирающийся на замок. В комплект входят:

  • станция управления;
  • датчик сухого хода (кондуктометрический тип);
  • датчик уровня;
  • паспорт и руководство по эксплуатации.

Технические и эксплуатационные характеристики станции «Каскад»:

  • номинальный ток - до 250 А;
  • рабочее положение - вертикальное;
  • питание датчиков уровня переменным током;
  • измерение тока по фазам нагрузки;
  • питающее напряжение - 380 В;
  • степень защиты - IP21, IP54.

Выпускаемые модели

Аварийное отключение в случае:

  • перегрузок во время работы и в момент запуска;
  • обрыва одной/двух фаз;
  • «холостом» ходе двигателя;
  • перегреве электродвигателя;
  • низкого дебета скважины;
  • короткого замыкания в цепи электродвигателя.

Устройство управления «Высота»

Устройство защиты/управления погружным наосом «Высота» предназначено для центробежных скважных агрегатов мощностью 2,8-90 кВт. Основные функции:

  • пуск/остановка насоса зависимо от уровня жидкости в резервуаре;
  • выключение агрегата при коротких замыканиях;
  • защита от сухого хода;
  • контроль сопротивления изоляции двигателя;
  • контроль нагрузки в фазе.

Важно! Если не используется датчик уровней, то возможна работа устройства в дистанционном режиме управления

Принцип работы станции «Высота»

При отсутствии в резервуаре воды, нижний и верхний электронные датчики (КНУ, КВУ) разомкнуты, а реле К1 обесточено - происходит запуск насосного оборудования. При верхнем уровне жидкости контакт КВУ замыкает цепь, срабатывает реле К1 и размыкает цепь катушки пускателя - насос отключается. После понижения уровня воды ниже КНУ происходит повторное включение электронасоса.

Защита от короткого замыкания электроцепи обеспечивается выключателем QF, цепи управления - предохранителем FU. Токовое тепловое реле КК защищает от перегрузок, при срабатывании светиться лампочка с надписью «Перегрузка».

Прибор управления Овен САУ-М2

Прибор для управления погружным насосом Овен САУ-М2 используется для поддержания уровня воды в накопительных емкостях, резервуарах, отстойниках и комплексах осушения.

Технические характеристики и условия эксплуатации:

  • номинально напряжение - 220В;
  • допустимые отклонения от уровня рекомендованного напряжения - +10…-15%;
  • максимально допустимый ток - 8 А;
  • сопротивление жидкости, при котором срабатывает датчик - до 500 кОм;
  • степень зашиты корпуса - IP44;
  • температура окружающей среды - +1…+50°С;
  • относительная влажность воздуха - максимум 80% при температуре +35°С;
  • атмосферное давление - около 86-106,7 кПа.

Функциональная схема блока управления погружным насосом САУ-М2

Когда уровень воды в резервуаре достигает нижней отметки, где установлен длинный электрод датчика бака, емкость автоматически наполняется до верхнего уровня, на котором монтирован короткий электрод датчика бака. К устройству подключены 2 трехэлектродных датчика:

  • датчик уровня заполняемой емкости;
  • датчик уровня в емкости, используемой для забора жидкости (скважина).

Компараторы 1-4 сравнивают значения сигналов с опорным значением, после чего выдают сигнал на включение/выключение реле насоса, к которому подсоединен электропривод агрегата.

Реле «Насос» выключается при затоплении короткого электрода датчика емкости и включается при осушении длинного электрода (нижний уровень).

Простая схема управления погружным насосом

Для обустройства дачного водоснабжения на небольшом возвышении желательно разместить емкость для накопления воды. Из бака по водопроводным трубам вода будет подаваться в дом и нужные места приусадебного участка. На рисунке приведена схема простейшего механизма управления насосом, которое можно организовать самостоятельно.

Схема состоит из небольшого количества элементов. Достоинства такого управления - простота установки и надежность.

Принцип работы:

  1. Запуск и выключение агрегата осуществляется нормально-замкнутым контактом реле К1.1.
  2. Режим работы выбирается переключателем S2 (водоподъем-дренаж).
  3. Датчики F1 и F2 контролируют уровень воды в резервуаре (в качестве бака можно применять обычную деревянную бочку или пластмассовую емкость).
  4. Включение питания выключателем S1, в случае, когда уровень жидкости ниже датчика F1 катушка реле обесточена - насос запускается через замкнутые контакты реле К1.1. После того, как вода поднимется до датчика F1 транзистор VT1 откроется и включит реле К1. Нормально-замкнутые контакты К1.1 рассоединятся и агрегат остановится.

В системе управления используется маломощный трансформатор от вещательного приемника. При этом важно соблюдать, чтоб напряжение на конденсаторе С1 было не менее 24 В. Диоды КД212А можно заменить любым диодом с выпрямленным током порядка 1 А и обратным напряжением более 100 В.

Насосные установки , используемые для нормализации подачи водоснабжения имеют определенный гарантийный срок, но, чтобы его продлить целесообразно использовать автоматическое управление водяным насосом. Такое оборудование представляет собой установку, предотвращающую поломку закачивающего прибора при недостаточном уровне воды в источнике.

Если насосная подстанция работает без соответствующего датчика, повышается риск выхода ее из строя, так как не предназначены для работы «в сухую». В условиях дефицита жидкости оборудование начинает портиться и перегорать. Если установить датчик уровня воды, можно предотвратить подобные неприятности. Эта статья посвящена решению вопроса выбора защитного устройства, его принципа работы и особенностей.

Подбор реле для защиты насосной станции от холостого хода и поддержания оптимального уровня воды в домашних условиях требует не меньшего внимания, чем . В первую очередь вы должны учесть характеристики собственной скважины, а также воспользоваться косвенными советами:

  • монтаж должен быть удобным и доступным. Поэтому не следует приобретать слишком массивные установки. Также они должны соответствовать характеристикам самого насоса;
  • идеально, если ваш датчик обладает упрощенной автоматической регулировкой. Другими словами, устройство имеет способность самостоятельно отключаться от сети, пока вода в скважине не придет к прежнему уровню;
  • следите за тем, чтобы защитное реле было хорошо гидроизолировано, так как попадание влаги на корпус выведет механизм из строя, если произойдет увеличение уровня жидкости;
  • уточните у продавца, насколько деталь для насоса долговечна и надежна. Не помешает узнать, как влияет частая пропажа уровня воды в скважине на работу защиты;
  • цена должна соответствовать оптимальным параметрам независимо от фирмы производителя. Варьироваться стоимость может из-за различного диапазона давления и общих технических характеристик.

Важно! Если вами был правильно сделан выбор и проведен монтаж, реле сможет самостоятельно остановить прибор без вреда для рабочего механизма насосного оборудования.

Рабочий механизм датчика. Как ведет себя конструкция во включенном виде?

Обычное реле холостого хода для насоса настроено на работу давления в диапазоне от 1 до 8 бар, при этом оно ориентируется по уровню жидкости. Внутренний механизм датчика представляет собой блок с настроенными пружинами, которые отвечают за двухсторонние пределы давления. Регулируются они специальными установленными гайками. Показатель давления контролирует мембранная пластина, при помощи которой пружина ослабляется при минимальном давлении и напрягается при достижении максимального значения.

Пружина датчика давления срабатывает при размыкании и смыкании контактов цепи. Если давление падает, происходит смыкание контактов, которое осуществляет датчик защиты и насос приходит в рабочее положение. В противоположном случае, насос отключается и не действует до тех пор, пока давление не нормализуется до оптимальных отметок.

Чтобы настроить правильную работу датчика понадобиться схема управления насосом. С целью точной настройки необходимо привести насосный агрегат в рабочее состояние - это позволит поднять давление воды в скважине. Регулировать работоспособность установки можно при помощи специально выведенных винтов под крышкой, которая защищает автоматику датчика.

Вы можете самостоятельно настроить пределы срабатывания защитного устройства. Для этого выполняем следующие действия последовательно.

  1. Фиксируем максимальный и минимальный предел давления по уровню жидкости в емкости, при которых насос находится в рабочем состоянии. Обязательно снимите показания с манометра.
  2. Отключаем насосную установку от электричества и разбираем защитный прибор.
  3. Снимаем крышку корпуса и немного отпускаем гайку, удерживающую маленькую пружину.
  4. Затем настраиваем минимальное давление: подтягиваем или отпускаем большую пружину также при помощи фиксирующей гайки.
  5. Открываем кран с целью снизить давление в системе трубопровода. При этом не забывайте контролировать срабатывание насоса.
  6. Обращаем внимание на показания манометра, если они оптимальны для вашего случая оставляем реле в таком состоянии, если нет - регулируем дальше.

Внимание! При настройке контролирующего датчика холостого хода вы должны учитывать возможности насосного агрегата. Например, если его заводское значение с потерями составляет порядка 3,5 бар, настраивать реле нужно на 3 бара. В противном случае есть вероятность перегрузки оборудования.

Несколько слов об автоматическом управлении насосом на воду

Устройства, основанные на схеме «автомат», могут пригодиться в домашних и фермерских условиях. Особенно важно наличие подобного оборудования в системах, где обязателен контроль уровня воды и ее давления.

Датчики, основанные на автоматической схеме управления, считаются полезными и не требующими постоянного наблюдения за оборудованием скважины, колодца или другого источника водоснабжения. Также подобные конструкции часто используются многофункционально.

Обратите внимание на схему автоматического управления насосом, она никак не связана с общим резервуаром, откуда поступает вода через насос.

Управление оборудованием в зависимости от уровня жидкости, получило огромное распространение и весьма востребовано, как в повседневной бытовой деятельности, так и в промышленности.

Вот основные примеры применения автоматики управления в зависимости от уровня жидкости:

  • Наполнение и опорожнение бассейнов
  • Защита от протечек и затопления
  • Автоматическая откачка воды из подвалов, шахт, колодцев, котлованов и пр.
  • Откачка канализационных стоков
  • Наполнение накопительных емкостей
  • Защита насосов от работы без воды
  • Регулирование рабочего уровня в малодебитных скважинах и колодцах
  • Защита нагревательных приборов от работы без воды

Устройства контроля уровня имеют разный принцип работы, но в конечном итоге их назначение сводится к одному свойству - разрывать или замыкать электрическую цепь в зависимости от уровня жидкости.

Трехфазные насосы возможно подключить только используя магнитный пускатель.

Устройства управления могут быть механическими или электронными.

Стоимость механических устройств, как правило ниже, но там где требуется максимальная точность и (или) надежность срабатывания, предпочтительно использование электронных устройств регулирования уровня.

Такие устройства используют кондуктометрический метод определения наличия жидкости.

Метод основан на электрической проводимости большинства жидкостей. Электроды из нержавеющей стали опускаются в воду на необходимый уровень по которому определяется алгоритм работы насоса.

В случае использования непроводящих ток жидкостей (бензин, солярка, растворители и пр.), обычно используются приборы использующие оптические датчики.

Рассмотрим подробнее основные устройства, позволяющее отслеживать уровень жидкости и управлять оборудованием. Хочется отметить, что в качестве примеров будем рассматривать управление насосным оборудованием, но это могут быть не только насосы, а и электроклапаны, ТЭНы, компрессоры и прочее электроуправляемое оборудование.

Рассмотрим подробнее:

Электрический поплавковый выключатель

Электрический поплавковый выключатель применяется, как для управления насосами на откачивание, так и для наполнения.

Принцип работы:

В корпусе поплавка находится металлический шар, перемещающийся по каналу. В крайнем положении шар воздействует на электрический выключатель, включая или отключая его. Положение шара зависит от положения поплавка.

Когда поплавок всплывает, шар перемещается в одно крайнее положения, при опускании поплавка вниз, шар перемещается в противоположное положение.

К поплавку подходит герметично смонтированный электрический кабель. В зависимости от его подключения к переключателю поплавка, выключатель может иметь три исполнения: работа на опорожнение, работа на наполнение и универсальный вариант, который в зависимости от электрического подключения может работать, как на наполнение, так и на опорожнение. Такие выключатели имеют дополнительный провод.

Как правило, поплавковые выключатели оснащены грузом, который крепится на электрическом кабеле и может по нему перемещаться. Путем перемещения груза по кабелю и регулируя глубину погружения груза, можно настроить поплавковый выключатель на определенный уровень включения и отключения.

Надежность срабатывания поплавкового выключателя - низкая и средняя, зависит от модели и производителя.

Точность управление уровнем - низкая.

Для объектов, где требуется высокая надежность срабатывания автоматики или точное управления уровнем, данный вид автоматики не рекомендуется.

Чаще всего, поплавковый выключатель, выходит из строя по причине прогорания контактов переключателя поплавка. Чтобы избежать этого, следует подключать поплавковый выключатель к насосу через магнитный пускатель или устройство с аналогичными функциями.

Напряжение коммутации – 220…240 В ~ 50Гц.

Максимальный рабочий / пусковой ток - 10А / 18А.

Максимальная глубина погружения – не более 0,7м.

Диапазон температуры воды – (+1 … +40) °С.

Класс защиты изделия – IP 68



Кондуктометрический метод управления

Существует значительно более надежный метод контроля и управления за уровнем жидкости - это кондуктометрический метод. Подходит, правда, только для токопроводящих жидкостей, но подавляющее большинство задач касается регулирования уровня воды, которая отлично проводит ток.
Принцип основан на том, что в жидкость погружаются электроды, между которыми протекает малый ток с небольшим напряжением. Специальный контроллер, таким образом с абсолютной точностью отслеживает уровень жидкости. Метод обладает высокой надежность, точностью регулирования и более гибки режим, т.к. можно произвольно выставить уровни.

Приведем пример: существует скважина с низким дебитом, соответственно скважинный насос требуется защитить от работы без воды максимально надежно и обеспечить его комфортную работу. Только кондуктометрическим способом мы можем обеспечить правильный режим эксплуатации насоса и высокую надежность срабатывания.
Мы можем задать режим, при котором насос будет отключаться при недопустимом уровне жидкости, а включаться только при полном восстановлении уровня воды в скважине. Это позволит не только защитить насос, но и обеспечить редкий запуск насоса. В противном случае его ресурс сильно сократится, т.к. небольшой подъем воды включит насос, который в считанные секунды эту воду выкачает и вновь отключится. И так короткими циклами. Это и некомфортно и быстро выведет насос из строя.
Контроллер - универсальное коммутирующее изделие, которому можно найти массу применений и расширить функционал. Например, вы хотите знать о аварийной ситуации - подключаем модульный зуммер или лампу, которая будет сигнализировать о неисправности. Подключив краны с сервоприводом, легко построить систему защиты от протечки воды. И многое другое.

В качестве электродов для кондуктометрической системы подойдет любой токопроводящий металлический предмет. Но так, как многие материалы окисляются и ржавеют, то рекомендуется в качестве электродов использовать элементы из латуни и нержавеющей стали.
Предлагаемые заводские электроды можно посмотреть

В качестве общего (нижнего) электрода, так же можно использовать корпус контролируемой емкости, если она металлическая. При автоматизации погружного насоса в качестве общего электрода может выступать корпус самого насоса, тогда просто подключаем клемму общего электрода на контакт земли кабеля насоса.

Электронный блок управления насосом по уровню HRH-5

HRH-5 - самое продвинутое, на данный момент, решение по управлению оборудованием в зависимости от уровня жидкости.

Блок HRH-5 способен управлять, как насосами на опорожнение, так и насосами, работающими на наполнение накопительной емкости. Так же широко применяется для защиты насосов и нагревательных элементов от работы без воды.

Блок использует кондуктометрический метод определения наличия жидкости. Его конструкция, делает этот блок абсолютно универсальным и приспособленным для любых, управляемых по уровню жидкости, систем управления оборудованием.

Блок HRH-5 имеет модульную конструкцию с монтажом в распределительный шкаф на DIN рейку.

HRH-5 управляет оборудованием через трехполюсное реле. К данному реле можно подключить однофазный насос с потребляемым током до 8А и мощностью до 1700 Вт. В то же время, для обеспечения высокого срока эксплуатации, рекомендуется подключать насосы через магнитный пускатель. Так же через магнитный пускатель подключаются трехфазные насосы и однофазные насосы большей мощности.

Принцип работы блока HRH-5 основан на электрической проводимости большинства видов жидкостей (вода, молоко и пр.). В жидкость помещаются электроды (не входят в комплект поставки) из нержавеющей стали. Электрический ток, имеющий низкое напряжение (3,5 В), протекает между электродами через жидкость и управляет коммутацией блока. HRH-5 - уникальна тем, что контрольный ток, протекающий через электроды имеет частоту всего 10 Гц, что обеспечивает сохранность электродов от окисления. Для ограничения нежелательных коммутаций выходных контактов волнением уровня жидкости можно настроить задержку реакции выхода 0.5 - 10 с. HRH-5 позволяет осуществлять коммутацию по двухэлектродной и трехэлектродной схеме. Двухэлектродная схема позволяет ограничить нижний или верхний уровень воды, трехэлектродная схема способна задавать диапазон уровня работы. Например, если использовать блок для защиты скважинного насоса от работы без воды. При двухэлектродной схеме, насос выключится, как только верхний электрод окажется без воды и обратно включится, как только вода поднимется до него. Эта схема применима для скважин с малой вероятностью недостатка воды. Если же скважина малодебитная, то подключение по двухэлектродной схеме приведет к очень частным включениям насоса, что быстро выведет его из строя. В такой ситуации лучше применить трехэлектродную схему, в которой задается диапазон минимального и максимального уровня. Т.е. насос включится только тогда, когда вода дойдет до верхнего электрода максимального уровня, а выключится, после того, как вода опустится до промежуточного электрода минимального уровня. Таким образом, значительно сокращается количество пусков насоса.

В случае работы с погружным насосом, который имеет металлический корпус, клемму COM можно запитать на провод заземления.

Рабочие характеристики

– 3 электрода переключения (MIN-D, MAX-H и COM-C)

– регулируемая чувствительность: 5 - 100kOhm

– установка в положении: опорожнение и наполнение с защитой от ошибочного срабатывания

– 1 выходной перекидной контакт

– задержка от случайного срабатывания 0,5 - 10 с

3,5 V 10 Hz - напряжение на электродах

Коммутируемая мощность реле - 8А

– Степень защиты IP40 (если установлено в корпусе и/или на электрощите с IP40); IP20 - на зажимах.
Настройку чувствительности, как правило, доводят до 6-8kΩ. Для менее проводящих жидкостей, как дождевая вода, чувствительность может быть увеличена до 100 кОм.


Функция опорожнения с использованием 3 электродов:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Функция опорожнения с использованием 3 электродов:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Подключение однофазного насоса с магнитным пускателем

Для данной схемы необходимо перемкнуть перемычкой клеммы D и H




Функция опорожнения с использованием 2 электродов:

Подключение трехфазного насоса с магнитным пускателем

Для данной схемы необходимо перемкнуть перемычкой клеммы D и H.

Когда вода доходит до MAX электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MAX электрода, выходное реле срабатывает и отключает



Функция опорожнения с использованием 2 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов



Аналогичным образом вышеуказанные схемы применяются для защиты погружных насосов от работы без воды.

Вот несколько примеров:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Функция защиты от работы без воды с использованием 2 электродов:

Подключение однофазного насоса с магнитным пускателем.

Ля данной схемы необходимо перемкнуть перемычкой клеммы H и D.

Когда вода доходит до MAX электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MAX электрода, выходное реле срабатывает и отключает



Функция защиты от работы без воды с использованием 3 электродов:

Используется для источников с низким дебитом.

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода, выходное реле срабатывает и отключает насос.



Функция защиты от работы без воды с использованием 3 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов

Используется для источников с низким дебитом.

Когда вода доходит до MIN электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MIN электрода, выходное реле срабатывает и отключает



Подключение однофазного насоса с магнитным пускателем.



Функция наполнения емкости с использованием 3 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов

Когда жидкость доходит до MIN электрода, выходное реле, включает насос.

Когда жидкость доходит до электрода MAX, насос останавливается.



Функция наполнения емкости с использованием 3 электродов:

Подключение трехфазного насоса с магнитным пускателем.

Когда жидкость доходит до MIN электрода, выходное реле, включает насос.

Когда жидкость доходит до электрода MAX, насос останавливается.



Подключение однофазного насоса - прямое подключение для маломощных насосов



Функция наполнения емкости с использованием 2 электродов:

Подключение однофазного насоса с магнитным пускателем.

Когда вода доходит до электрода MAX, насос выключается.

Когда жидкость не касается (уровень ниже) электрода MAX, насос включается.



Функция наполнения емкости с использованием 2 электродов:

Подключение трехфазного насоса с магнитным пускателем.

Когда вода доходит до электрода MAX, насос выключается.

Когда жидкость не касается (уровень ниже) электрода MAX, насос включается.



Выше были представлены наиболее популярные схемы, использующие блок HRH-5.

Но его применение далеко не исчерпывается приведенными примерами.

Комбинируя электроды, полярность реле и их количество, можно найти еще множество примеров применения данному устройству.

Напоследок, хочется привести еще одну схему. Данная схема популярна при водоснабжении из источника имеющего малый дебит.

В таких случаях необходимо защитить насос от работы без воды, минимизировать количество пусков насоса и обеспечить наполнение накопительной емкости, которая обеспечивает бесперебойное снабжение водой потребителей.


Как уже говорилось ранее, контроллер уровня имеет много примеров применения, помимо насосного оборудования. Так, это может быть: управление ТЭН, электроклапанами и прочими устройствами.

Приведем пару, наиболее популярных решений.

В данном примере контроллер используется для дублирующего аварийного управления заполнением накопительной емкости , т.к. запорный поплавковый клапан - удобное решение, но рано или поздно такой клапан выходит из строя. Контроллер, в случае переполнения закроет магистраль и включит звуковую сигнализацию. До исправления неисправности, система будет автоматически поддерживать уровень воды в емкости.

Данная схема аналогична предыдущей, но здесь система выполняет роль защиты помещения от аварийной протечки .

Электронный комплекс управления насосом по уровню HRH-4

Вышеописанный контроллер HRH-5 является наиболее универсальным, точным и надежным способом контроля за уровнем воды. В нем заложены все новейшие разработки в этой области.

Так, контролеер не боится пониженного напряжения т.к. имеет универсальное питание от 24 В до 230 В. Частота контрольного тока снижена до 10 Гц, что препятствует возникновению электрической коррозии электродов. Высокая надежность изготовления обеспечивается качеством от известного производителя.

Рабочее реле контроллера не может обеспечить универсальную коммутацию, поэтому любое мощное оборудование подключается через контактор (магнитный пускатель), который и выполняет коммутацию оборудования по управляющей команде контроллера. Такая схема является наиболее предпочтительной, т.к. не нагружает реле контроллера, что обеспечивает ему высокий ресурс, а контактор специально предназначен для частой коммутации мощных устройств. Трехфазное оборудование возможно подключить только через контактор.

Для удобства пользователя ELKO разработала готовый комплекс в сборе HRH-4.

В этом комплексе установлен вышеописанный контроллер HRH-5 и контактор. Все это закоммутировано и выведенно на клеммы для удобства подключения. Элементы установлены на DIN рейку в корпусе с защитой IP55, что позволяет устанавливать его на улице, подвале, колодце, резервуаре и пр.

Остается только подать напряжение питания, подключить электроды и насос.

Все функции контроллера сохраняются. Возможно использовать, как для контроля за откачкой, так и за наполнением емкости. Подключение однофазных и трехфазных насосов и пр.

Напряжение питания, гальв.изолирован. (AC 50-60 Гц), В AC/DC 230 V AC/DC 24 V

Мощность, VA 7

Допуск напряжения питания -15 %; +10 %

Чувствительность (вход. cопротивл.), кОм 5 - 100

Число контактов, коммутир. 4

Номинальный ток, А 25

Механическая жизненность 3x106

Рабочая температура, °C -20 ... +55

Рабочее положение произвольное

Защита всего комплекса контроля уровня IP 55

Размер, мм 160 x 135 x 83

Вес, кг 0,834

Максимальная мощность подключаемого оборудования:

ТЭН - 16 кВт

Насосы 1-фазные - 2,2 кВт

Насосы 3-фазные - 4 кВт

Схемы подключения аналогичны схемам с HRH-5. Но для понятности следует привести пару примеров.

Пример использования для защиты скважинного однофазного насоса от работы без воды и контроля уровня при низком дебите.

В качестве общего электрода используется корпус насоса с подключением через заземление.



Пример подключения трехфазного насоса

Электронный блок управления насосом по уровню СКЛ 6

Блок СКЛ-6, аналогичен блоку HRH-5 и так же использует кондуктометрический метод определения наличия жидкости.

Блок СКЛ-6 способен управлять, как насосами на опорожнение, так и насосами, работающими на наполнение накопительной емкости.

Высочайшая надежность и точность управления по уровню, позволяет применять данное устройство не только в бытовых целях, но и в промышленности, для управления устройствами, требующих высокой надежности срабатывания.

Блок СКЛ-6 имеет модульную конструкцию с монтажом в распределительный шкаф на DIN рейку.

Конструктивно, блок состоит из двух независимых устройств регулирования уровня и может применяться, как для управления двумя насосами, так и для управления одним насосом по сигналу из двух емкостей или источников.

СКЛ-6 управляет оборудованием через два трехполюсных реле.

Реле рассчитано на малую мощность, поэтому насосы подключаются к нему исключительно через магнитный пускатель.

Принцип работы блока СКЛ-6 основан на электрической проводимости большинства видов жидкостей (вода, молоко и пр.). В жидкость помещаются электроды (не входят в комплект поставки) из нержавеющей стали. Электрический ток, имеющий низкое напряжение (10 В), протекает между электродами через жидкость и управляет коммутацией блока.

Во всех схемах, нижний электрод COM опускается как можно ниже. Если корпус емкости металлический, то вместо электрода клемму COM можно запитать на корпус емкости.

Примеры применения:

Установка уровня работы для погружного насоса в малодебитном источнике с одновременным регулированием уровня в накопительном баке.

Поддержание уровня воды в бассейне с наполнением в случае недостатка воды и откачиванием при излишке.

Включение резервного насоса при откачивании стоков, в случае, когда основной насос не справляется.

Другие схожие схемы

Рабочие характеристики

Напряжение питания - ~ 220В, 50-60 Гц

Принцип определения наличия воды - кондуктометрический

Гальваническая развязка датчиков - через трансформатор с электрической прочностью изоляции 6 кВ

Количество независимых каналов - 2

Количество датчиков каждого канала - 2

Максимальный ток нагрузки встроенных реле - 5 А

Выходной управляющий сигнал - переключающийся контакт


Примеры:

Вариант предыдущей схемы водоснабжения из источника, имеющего низкий дебит, но уже с применением блока СКЛ-6, который заменил два блока HRH-5.


Поддержание уровня воды в бассейне.

В данном случае, если уровень воды ниже определенного уровня, включается подающий насос (если вода подается из магистрального трубопровода, то насос можно заменить электромагнитным клапаном) и бассейн пополняется водой. Если уровень воды недопустимо повышается, включается откачивающий насос.


Как уже говорилось выше, данный блок можно использовать и для управления парой дренажных насосов. Схематически, рассматривать данный пример не будем, т.к. для этой цели предпочтительно применение приборов, которые будут рассмотрены далее.

Блок СКЛ-12 по принципу работы и устройству аналогичен выше рассмотренным блокам, работающим по принципу электрической проводимости жидкости.

Основное отличие данного блока заключается в его узкой специализации.

Блок СКЛ-12 предназначен для управление насосами откачки стоков из канализационных, дождевых и прочих колодцев, котлованов, водосборных приямков и прочих емкостей.

СКЛ-12 управляет двумя насосами - основным и резервным. Как правило, данная схема применяется в местах, где недопустимо переполнение колодцев.

При работе опрашиваются три датчика уровня и, в зависимости от ситуации, включаются один или два насоса. При этом, при повышении уровня жидкости, порядок их включения меняется - первым включается то один, то другой насос. Это приводит к более равномерному их износу и экономии ресурса.

Т.е. если при первом заполнении бака сначала включится первый насос, а затем второй, то при следующем заполнении, первым включится второй насос, а только затем – первый.

Датчики уровней устанавливаются в соответствующих местах в накопительном баке или приямке.

Общий провод либо присоединяется к корпусу бака (если он металлический), либо устанавливается ниже нижнего датчика.

Насосы подключаются к сети через нормально разомкнутые контакты соответствующих реле.

После включения прибор сразу готов к работе и, в зависимости от состояния датчиков, включает/выключает соответствующие насосы.

Прибор снабжен системой контроля исправности датчика первого уровня. Если система обнаруживает, что датчики второго и/или третьего уровня погружены в воду, а первого – нет, то отключаются оба реле и индикаторы второго и третьего уровней, а индикатор первого уровня начинает мигать.