Зона заражения чернобыля карта. Чем интересна зона отчуждения чернобыльской аэс

Сколько лет уже прошло с момента трагедии. Сам ход аварии, ее причины и следствия уже вполне себе определены и всем известны. Насколько я знаю, тут даже нет какого то двоякого толкования, разве что в мелочах. Да вы и сами все знаете. Давайте я вам лучше расскажу некоторые казалось бы обычные моменты, но возможно вы о них и не задумывались.

Миф первый: отдалённость Чернобыля от больших городов.

На самом деле в случае с чернобыльской катастрофой, только случайность не привела к эвакуации Киева например. Чернобыль находится в 14 км от АЭС, а Киев находится от Чернобыля всего в 151 км (по другим данным 131 км) по автодороге. А по прямой, что для радиационного облака предпочтительней и 100 км не будет — 93,912 км . А Википедия дает вообще вот такие данные — расстояние до Киева физическое - 83 км, по автодорогам - 115 км.

Вот кстати, полная карта для полноты картины

Кликабельно 2000 рх

В первые дни аварии на Чернобыльской АЭС битва с радиацией велась и на подступах к Киеву. Угроза заражения исходила не только от чернобыльского ветра, но и от колес автотранспорта, шедшего из Припяти в столицу. Проблему очистки радиоактивной воды, образовавшейся после дезактивации автомобилей, решили ученые Киевского политехнического института.

В апреле-мае 86-го года вокруг столицы организовали восемь пунктов радиоактивного контроля автотранспорта. Автомобили, шедшие на Киев, попросту поливали из брантспойтов. А вся вода уходила в почву. В пожарном порядке строились резервуары для сбора использованной радиоактивной воды. Буквально в считанные дни они наполнялись до краев. Радиоактивный щит столицы мог превратиться в ее ядерный меч.

И только тогда руководство Киева и штаб гражданской обороны согласились рассмотреть предложение химиков- политехников об очистке загрязненной воды. Тем более что наработки в этом плане уже были. Еще задолго до аварии в КПИ была создана лаборатория по разработке реагентов для очистки сточных вод, которой руководил профессор Александр Петрович Шутько.

П редложенная группой Шутько технология обеззараживания воды от радионуклидов не требовала строительства сложных очистных сооружений. Дезактивация осуществлялась непосредственно в накопителях. Уже через два часа после обработки воды специальными коагулянтами радиоактивные вещества оседали на дне, а очищенная вода соответствовала предельно-допустимым нормам. После этого в 30-ти километровой зоне хоронили только радиоактивные осадки. Представляете, если бы не была решена проблема очистки воды? Тогда вокруг Киева понастроили бы множество вечных могильников с радиоактивной водой!

К сожалению профессор А.П.Шутько. ушел от нас в свои неполные 57 лет, не дожив всего 20 дней до десятилетней годовщины аварии на ЧАЭС. А ученые-химики, которые с ним работали бок о бок в чернобыльской зоне за свою самоотверженную работу успели получить «звание ликвидаторов», бесплатный проезд в транспорте и кучу болезней, связанных с радиоактивным облучением. Среди них — доцент кафедры промышленной экологии Национального политехнического университета Анатолий Крысенко. Именно ему профессор Шутько первому предложил испытать реагенты для очистки радиоактивных вод. Вместе с ним в группе Шутько работали доцент КПИ Виталий Басов и доцент института ГВФ Лев Малахов.

Почему авария чернобыльская, а мертвый город — ПРИПЯТЬ?


На территории зоны отчуждения расположены несколько эвакуированных населённых пунктов:
Припять
Чернобыль
Новошепеличи
Полесское
Вильча
Северовка
Янов
Копачи
Чернобыль-2

Визуальное расстояние между Припятью и ЧАЭС

Почему так известна только Припять? Это просто самый крупный город в зоне отчуждения и самый ближний к нему - по последней проведённой до эвакуации переписи (в ноябре 1985 года), численность населения составляла 47 тысяч 500 человек, более чем 25 национальностей. Например в самом Чернобыле до аварии проживало всего 12 тыс. человек.

Кстати, после аварии Чернобыль не был заброшен и полностью эвакуирован как Припять.

В городе живут люди. Это МЧСовцы, милиционеры, повара, дворники, сантехники. Их около 1500 человек. На улицах в основном мужчины. В камуфляже. Такова местная мода. Некоторые многоквартирные дома обжиты, но постоянно там не живут: шторы выцвели, краска на окнах облезла, форточки закрыты.

Люди здесь временно останавливаются, вахтенным способом работают, живут в общежитиях. На атомной электростанции трудятся еще пара тысяч человек, они в основном живут в Славутиче и ездят на работу на электричке.

Большинство работают в зоне по вахтовому методу, 15 дней здесь, 15 - «на воле». Местные говорят, средняя зарплата в Чернобыле всего 1,700 грн., но это очень усреднено, у некоторых и побольше. Правда, особо тратить деньги тут не на что: не нужно платить за коммунальные услуги, жилье, еду (всех по три раза в день кормят бесплатно, причем не плохо). Есть один магазин, но выбор там невелик. Ни ларьков с пивом, ни каких-то развлечений на режимном объекте нет. Кстати, Чернобыль - это еще и возврат в прошлое. В центре города стоит Ленин во весь рост, памятник комсомолу, все названия улиц – из той эпохи. По городу фон около 30-50 микрорентген – предельно допустимые для человека.

А теперь обратимся к материалам блогера vit_au_lit :

Миф второй: непосещаемость.


Многие наверное думают о том, что в зону аварии ездят разве что какие нибудь искатели радиации, сталкеры и т.п., а нормальные люди ближе, чем на 30 км., к этой зоне не подойдут. Ещё как подойдут!

Первый контрольный пункт на дороге к станции - это зона III: 30-километровый периметр вокруг АЭС. На подъезде к КПП выстроилась такая вереница машин, что я даже и представить не мог: притом, что машины пропускались через контроль в 3 ряда, мы отстояли около часа, дожидаясь своей очереди.

Причина тому - активное посещение бывшими жителями Чернобыля и Припяти в период с 26 апреля до майских праздников. Все они едут либо на прежние места жительства, либо на кладбища, или «на гробки», как тут ещё говорят.

Миф третий: закрытость.


Вы были уверены, что все подъезды к АЭС тщательно охраняются, и никого, кроме обсуживающего персонала, туда не пускают, а проехать внутрь зоны можно, только дав на лапу охранникам? Ничего подобного. Через КПП, конечно, просто так не проедешь, но миллиционеры лишь выписывают на каждую машину пропуск, с указанием кол-ва пассажиров, и езжай себе, облучайся.

Говорят, что раньше ещё и паспорта спрашивали. Кстати, детей до 18 лет в зону не пускают.

Дорога к Чернобылю окружена с двух сторон стеной деревьев, но ели приглядеться, то среди бурной растительности проглядывают заброшенные полуразвалины частных домов. В них уже никто не вернётся.

Миф четвёртый: необитаемость.


Чернобыль, находящийся между 30- и 10-километровыми периметрами вокруг АЭС, вполне себе обитаемый. В нём живёт обслуживающий персонал станции и окружностей, МЧС и те, кто вернулись на свои прежние места. В городе есть магазины, бары, и ещё кое-какие блага цивилизации, но нет детей.

Чтобы въехать в 10-километровый периметр, достаточно показать пропуск, выданный на первом КПП. Ещё 15 минут на машине, и мы подъезжаем к АЭС.

Самое время достать дозиметр, которым меня заботливо снабдила мадам, выпросив сий девайс у своего деда, помешанного на такого рода примочках. Перед отъездом vit_au_lit замерил показания во дворе своего дома: 14 мкР/час - типичные показатели для незараженной среды.
Кладём дозиметр на траву, и пока делаем пару кадров на фоне клумбы, приборчик себе тихо подсчитывает. Что он там намерял?

Хех, 63 мкР/час - в 4,5 раза больше среднегородской нормы… после этого получаем совет от наших провожатых: ходить только по бетонной дороге, т.к. плиты более-менее очищены, но вот в траву не залезать.

Миф пятый: неприступность АЭС.


Почему-то мне всегда казалось, сама АЭС обнесена каким-нибудь километровым периметром колючей проволоки, чтобы не дай бог какой-нибудь искатель приключений не подошёл к станции ближе, чем несколько сот метров, и не получил дозу облучения.

Дорога приводит нас прямо к центральной проходной, куда время от времени подъезжают рейсовые автобусы, развозящие работников станции - на АЭС и по сей день продолжают работать люди. Со слов наших провожатых - несколько тысяч человек, хотя мне эта цифра показалась слишком высокой, ведь все реакторы давно уже остановлены. За цехом виднеется труба разрушенного 4 реактора.


Площадь перед центральным административным зданием переустроена в один большой мемориал погибшим при ликвидации аварии.


На мраморных плитах высечены имена тех, кто погиб в первые часы после взрыва.

Припять: тот самый мёртвый город. Его строительство началось одновременно со строительством АЭС, и предназначался он для работников станции и их семей. Находится он в каких-то 2 километрах от станции, поэтому ему досталось больше всего.

На въезде в город стоит стела. В этой части дороги радиационный фон самый опасный:

257 мкР/час, что почти в 18 раз превышает среднегородскую норму. Другими словами, ту дозу радиации, которую мы получаем за 18 часов в городе, здесь мы получим за час.

Ещё несколько минут, и мы доезжаем до КПП Припяти. Дорога идёт недалеко от ЖД ветки: в былые времена по ней ходили самые обычные пассажирские поезда, например Москва-Хмельницкий. Пассажирам, ехавшим этим маршрутом 26 апреля 1986 года, выдавали потом удостоверение чернобыльца.

В город пускают только пешком, нам так и не удалось выбить разрешение для проезда, хотя у провожатых были удостоверения.

К слову о мифе непосещаемости. Вот фото, сделанное с крыши одной из высоток на окраине города, вблизи КПП: среди деревьев видны машины и автобусы, припаркованные вдоль дороги, ведущей в Припять.

А вот так выглядела это дорога до аварии, во времена «живого» города.

Предыдущая фотка была сделана с крыши самой правой из 3 девятин на первом плане.

Миф шестой: ЧАЭС после аварии не работает.

22 мая 1986 года постановлением ЦК КПСС и Совета Министров СССР № 583 был установлен срок ввода в эксплуатацию энергоблоков № 1 и 2 ЧАЭС - октябрь 1986 года. В помещениях энергоблоков первой очереди проводиласьдезактивация, 15 июля 1986 года окончен её первый этап.

В августе на второй очереди ЧАЭС произведено рассечение коммуникаций, общих для 3-го и 4-го блоков, возведена бетонная разделительная стена в машинном зале.

После выполненных работ по модернизации систем станции, предусмотренных мероприятиями, утверждёнными Минэнерго СССР 27 июня 1986 года и направленными на повышение безопасности АЭС с реакторами РБМК, 18 сентября получено разрешение на начало физического пуска реактора первого энергоблока. 1 октября 1986 года запущен первый энергоблок и в 16 ч 47 мин произведено подключение его к сети. 5 ноября произведен пуск энергоблока № 2.

24 ноября 1987 года приступили к физическому пуску реактора третьего энергоблока, энергетический пуск состоялся 4 декабря. 31 декабря 1987 года решением Правительственной комиссии № 473 утверждён акт приёмки в эксплуатацию 3-го энергоблока ЧАЭС после ремонтно-восстановительных работ.

Третья очередь ЧАЭС, недостроенные 5 и 6 энергоблоки, 2008 год. Строительство 5-го и 6-го блоков было прекращено при высокой степени готовности объектов.

Однако, как вы помните, много было претензий зарубежных стран по поводу работающей ЧАЭС.

Постановлением Кабинета Министров Украины от 22 декабря 1997 года признано целесообразным произвести досрочное снятие с эксплуатации энергоблока № 1, остановленного 30 ноября 1996 года .

Постановлением Кабинета Министров Украины от 15 марта 1999 года признано целесообразным произвести досрочное снятие с эксплуатации энергоблока № 2, остановленого после аварии в 1991 году .

С 5 декабря 2000 года мощность реактора постепенно снижалась при подготовке к остановке. 14 декабря реактор работал на 5 % мощности для церемонии остановки и 15 декабря 2000 года в 13 часов 17 минут по приказу Президента Украины во время трансляции телемоста Чернобыльская АЭС - Национальный дворец «Украина» поворотом ключа аварийной защиты пятого уровня (АЗ-5) реактор энергоблока № 3 Чернобыльской АЭС был остановлен навсегда, и станция прекратила генерацию электроэнергии.

Давайте почтим память героев-ликвидаторов, которые не жалея своей жизни спасали других людей.

Раз уж мы заговорили о трагедиях, давайте вспомним Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -
Фото: © Greenpeace

Авария, аналогичная катастрофе на японской АЭС Фукусима-1, может случиться и в России. Тогда, по оценкам Гринпис, из-за радиоактивного загрязнения в зоне выселения могут оказаться десятки и сотни тысяч человек, проживающих у каждой из атомных станций и попадающих в зону риска выселения .

Сегодня Гринпис опубликовал оценочные карты возможного радиоактивного загрязнения , которое может случиться, если авария произойдет на российских АЭС. В России ежегодно на АЭС случается не менее десяти инцидентов, когда срабатывает аварийная защита и глушится реактор. Для последующей остановки работы системы охлаждения АЭС (как это было в Японии) совсем необязательно, чтобы на нее обрушилось цунами.


По оценкам Гринпис, в случае наихудшего, даже с точки зрения атомщиков, сценария в зону выселения или с правом на выселение попадают такие города как Сосновый Бор (67 тысяч человек), Нововоронеж (35 тысяч человек) Цимлянск (14 тысяч человек). В непосредсвенной зоне выселения оказывается Удомля (35 тысяч человек). Речь идет о населенных пунктах, расположенных в зоне риска вблизи десяти действующих, четырех строящихся и восьми проектируемых атомных станций Росатома. Сделанная оценка консервативна и с учетом всех допущений зоны выселения будут значительно выше. Можно с уверенностью говорить о том, что в зоне риска выселения оказываются все города в 15-километровой зоне от атомных станций, в т.ч. Балаково (198 тысяч человек), Курчатов (47 тысяч человек).
Оценка условий распространения радиации сделана на основе расчетов, выполненных для проектируемой Белорусской АЭС с энергоблоками самого «последнего и безопасного» дизайна ВВЭР-1200, при так называемой «запроектной аварии». Расчет для Белорусской АЭС был сделан Министерством энергетики республики Беларусь. Зонирование было сделано на основе российского закона «О социальной защите граждан, подвергшихся воздействию радиации вследствие катастрофы на Чернобыльской АЭС».
При распространении радиоактивного облака (по сценарию в холодный период года), длина следа на котором необходимо будет произвести отселение (плотность загрязнения цезием-137 свыше 15 Кюри/км²) может составить 20 км (при распространении на северо-восток), при северном распространении следа длина радиоактивного следа составит свыше 30 км.
Необходимо учитывать, что цифры, взятые за основу сценария Белорусской АЭС крайне занижены: предполагается, что выброс цезия-137 будет в 1000 раз меньше, чем в Чернобыле. Однако недавняя авария на Фукусиме-1, по оценкам некоторых экспертов, показала, что выброс цезия составил не в 1000, а в 10 раз меньше. Кроме того, многие действующтие атомные станции однозначно дадут бОльший выброс радиации, например, три АЭС (Ленинградская, Курская, Смоленская) с 11-ю реакторами чернобыльского типа. Помимо цезия, может идти речь и о более опасном загрязнении плутонием, для которого критерии выделения зон выселения более жесткие. Плутоний планируется сжигать на Балковской и Юелоярской АЭС.
Сценарий аварии на Фукусиме в России возможен. Об этом говорит проект Белорусской АЭС. Кроме того, на днях экс-министр атомной энергетики Е.Адамов подтвердил это: «зоны (реактора - прим. Ред.) могут плавиться, могут происходить такие же события, которые сейчас происходят на Фукусиме без всякого землетрясения и без того, чтобы цунами залило системы охлаждения».
«Руководитель Росатома Сергей Кириенко объявил, что атомные станции будут «открыты» для общественности, - говорит Владимир Чупров, руководитель энергетического отдела Гринпис России. - Мы требуем, чтобы первым делом Росатом предоставил карты радиоактивного загрязнения для всех своих станций с переченем населенных пунктов, подлежащих эвакуации при наихудших сценариях аварии».
Оценки Гринпис носят предварительный характер и выстроены с учетом ряда допущений, без учета наихудших условий развития аварий. Именно поэтому Гринпис требует от правительства опубликовать актуальные карты радиоактивного загрязнения для каждой из станций Росатома, а также сделать доступными планы действий по защите населения проживающего вблизи АЭС в случае радиационной аварии по наихудшему сценарию.

Дополнительная информация
Действующие и строящиеся АЭС

Балаковская АЭС
Расположение: близ г. Балаково (Саратовская обл.)
Типы реакторов: ВВЭР-1000
Энергоблоков: 4
Годы ввода в эксплуатацию: 1985, 1987, 1988, 1993
Балаковская АЭС относится к числу крупнейших и современных предприятий энергетики России, обеспечивая четверть производства электроэнергии в Приволжском федеральном округе. Ее электроэнергией надежно обеспечиваются потребители Поволжья (76% поставляемой электроэнергии), Центра (13%), Урала (8%) и Сибири (3%). Она оснащена реакторами ВВЭР (водо-водяные энергетические реакторы корпусного типа с обычной водой под давлением). Электроэнергия Балаковской АЭС - самая дешевая среди всех АЭС и тепловых электростанций России. Коэффициент использования установленной мощности (КИУМ) на Балаковской АЭС составляет более 80%. Станция по итогам работы в 1995, 1999, 2000, 2003 и 2005-2007 гг. удостаивалась звания «Лучшая АЭС России».

Белоярская АЭС

Типы реакторов: АМБ-100/200, БН-600
Энергоблоков: 3 (2 – выведены из эксплуатации) + 1 в стадии строительства
Годы ввода в эксплуатацию: 1964, 1967, 1980
Это первая АЭС большой мощности в истории атомной энергетики страны, и единственная с реакторами разных типов на площадке. Именно на Белоярской АЭС эксплуатируется единственный в мире мощный энергоблок с реактором на быстрых нейтронах БН-600 (№ 3). Энергоблоки на быстрых нейтронах призваны существенно расширить топливную базу атомной энергетики и минимизировать объем отходов за счёт организации замкнутого ядерно-топливного цикла. Энергоблоки №№ 1 и 2 выработали свой ресурс, и в 80-е годы были выведены из эксплуатации. Блок № 4 с реактором БН-800 планируется сдать в эксплуатацию в 2014 году.

Билибинская АЭС
Расположение: близ г. Билибино (Чукотский автономный округ)
Типы реакторов: ЭГП-6
Энергоблоков: 4
Годы ввода в эксплуатацию: 1974 (2), 1975, 1976
Станция производит около 75% электроэнергии, вырабатываемой в изолированной Чаун-Билибинской энергосистеме (на эту систему приходится около 40% потребления электроэнергии в Чукотском АО). На АЭС эксплуатируются четыре уран-графитовых канальных реактора установленной электрической мощностью 12 МВт каждый. Станция вырабатывает как электрическую, так и тепловую энергию, которая идет на теплоснабжение Билибино.

Калининская АЭС
Расположение: близ г. Удомля (Тверская обл.)
Тип реактора: ВВЭР-1000
Энергоблоков: 3 + 1 в стадии строительства
Год ввода в эксплуатацию: 1984, 1986, 2004
В составе Калининской атомной станции три действующих энергоблока с водо-водяными энергетическими реакторами ВВЭР-1000 мощностью 1000 МВт (эл.) каждый. Строительство энергоблока № 4 ведется с 1984 года. В 1991 году сооружение блока было приостановлено, в 2007 году оно возобновилось. Функции генерального подрядчика на строительстве энергоблока осуществляет ОАО «Нижегородская инжиниринговая компания «Атомэнергопроект» (ОАО «НИАЭП»).

Кольская АЭС
Расположение: близ г. Полярные Зори (Мурманская обл.)
Тип реактора: ВВЭР-440
Энергоблоков: 4
Год ввода в эксплуатацию: 1973, 1974, 1981, 1984
Кольская АЭС, расположенная в 200 км к югу от г. Мурманска на берегу озера Имандра, является основным поставщиком электроэнергии для Мурманской области и Карелии. В эксплуатации находятся 4 энергоблока с реакторами типа ВВЭР-440 проектов В-230 (блоки №№ 1, 2) и В-213 (блоки №№ 3, 4). Генерируемая мощность - 1760 МВт. В 1996-1998 гг. признавалась лучшей атомной станцией России.

Курская АЭС
Расположение: близ г. Курчатов (Курская обл.)
Тип реактора: РБМК-1000
Энергоблоков: 4
Год ввода в эксплуатацию: 1976, 1979, 1983, 1985
Курская АЭС расположена на левом берегу реки Сейм, в 40 км юго-западнее Курска. На ней эксплуатируются четыре энергоблока с реакторами РБМК-1000 (уран-графитовые реакторы канального типа на тепловых нейтронах) общей мощностью 4 ГВт (эл.). В 1993-2004 гг. были радикально модернизированы энергоблоки первого поколения (блоки №№ 1, 2), в 2008-2009 гг. - блоки второго поколения (№№ 3, 4). В настоящее время Курская АЭС демонстрирует высокий уровень безопасности и надежности.

Ленинградская АЭС
Тип реактора: РБМК-1000
Энергоблоков: 4 + 2 в стадии строительства
Год ввода в эксплуатацию: 1973, 1975, 1979, 1981
ЛАЭС была первой в стране станцией с реакторами РБМК-1000. Она была построена в 80 км западнее Санкт-Петербурга, на берегу Финского залива. На АЭС эксплуатируются 4 энергоблока электрической мощностью 1000 МВт каждый. В настоящий момент сооружается вторая очередь станции (см. Ленинградская АЭС-2 ниже).

Нововоронежская АЭС
Расположение: близ г. Нововоронеж (Воронежская обл.)
Тип реактора: ВВЭР различной мощности
Энергоблоков: 3 (еще 2 выведены из эксплуатации)
Год ввода в эксплуатацию: 1964, 1969, 1971, 1972, 1980
Первая в России АЭС с реакторами типа ВВЭР. Каждый из пяти реакторов станции является прототипом серийных энергетических реакторов. Энергоблок № 1 был оснащен реактором ВВЭР-210, энергоблок № 2 - реактором ВВЭР-365, энергоблоки №№ 3, 4 - реакторами ВВЭР-440, энергоблок № 5 - реактором ВВЭР-1000. В настоящее время в эксплуатации находятся три энергоблока (энергоблоки №№ 1,2 были остановлены в 1988 и 1990 гг.). Нововоронежская АЭС-2 сооружается по проекту АЭС-2006 с использованием реакторной установки ВВЭР-1200. Генеральным подрядчиком по сооружению Нововоронежской АЭС-2 выступает ОАО «Атомэнергопроект» (г. Москва).

Ростовская АЭС
Расположение: близ г. Волгодонска (Ростовская обл.)
Тип реактора: ВВЭР-1000
Энергоблоков: 2 + 2 в стадии строительства
Год ввода в эксплуатацию: 2001, 2009
Ростовская АЭС распложена на берегу Цимлянского водохранилища, в 13,5 км от Волгодонска. Она является одним из крупнейших предприятий энергетики Юга России, обеспечивающим около 15% годовой выработки электроэнергии в регионе. С момента пуска энергоблок № 1 выработал свыше 63,04 млрд кВт.ч. 18 марта 2009 года состоялся пуск в эксплуатацию энергоблока № 2.

Смоленская АЭС
Расположение: близ г. Десногорска (Смоленская обл.)
Тип реактора: РБМК-1000
Энергоблоков: 3
Год ввода в эксплуатацию: 1982, 1985, 1990
Смоленская АЭС - одно из ведущих энергетических предприятий Северо-Западного региона России. Она состоит из трёх энергоблоков с реакторами РБМК-1000. Станция сооружена в 3 км от города-спутника Десногорск, на юге Смоленской области. В 2007 году она первой среди АЭС России получила сертификат соответствия системы менеджмента качества международному стандарту ISO 9001:2000. САЭС - крупнейшее градообразующее предприятие Смоленской области, доля поступлений от нее в областной бюджет составляет более 30%.

СТРОЯЩИЕСЯ АЭС

Балтийская АЭС
Расположение: близ г. Неман, Калининградская обл.
Тип реактора: ВВЭР-1200
Энергоблоков: 2
Балтийская АЭС - первый проект сооружения атомной станции на территории России, к которому будет допущен частный инвестор. Проект предусматривает использование реакторной установки ВВЭР мощностью 1200 МВт (электрических). Первый блок планируется построить к 2016 году, второй – к 2018. Расчетный срок службы каждого блока – 60 лет. Генеральным подрядчиком по сооружению станции выступает ЗАО «Атомстройэкспорт».

Белоярская АЭС-2
Расположение: близ г. Заречный (Свердловская обл.)
Тип реактора: БН-800
Энергоблоков: 1 - в стадии строительства
Основу второй очереди станции должен составить энергоблок № 4 Белоярской АЭС с реакторной установкой на быстрых нейтронах БН-800. Он сооружается в соответствии с Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007 – 2010 годы и на перспективу до 2015 года». Ориентировочные сроки завершения строительства – 2013-2014 годы. Ввод в строй этого энергоблока обещает существенно расширить топливную базу атомной энергетики, а также минимизировать радиоактивные отходы, за счёт организации замкнутого ядерно-топливного цикла.

Ленинградская АЭС -2
Расположение: близ г. Сосновый Бор (Ленинградская обл.)
Тип реактора: ВВЭР-1200
Энергоблоков: 2 – в стадии строительства, 4 – по проекту
Станция строится на площадке ЛАЭС. Сооружение энергоблоков №№ 1 и 2 ЛАЭС-2 включено в Программу деятельности Государственной корпорации по атомной энергии «Росатом» на долгосрочный период (2009-2015 годы), утвержденную постановлением Правительства Российской Федерации от 20.09.2008 № 705. Функции заказчика-застройщика выполняет ОАО «Концерн «Росэнергоатом». 12 сентября 2007 г. Ростехнадзор официально сообщил о выдаче лицензий на размещение 1-го и 2-го энергоблоков типа ВВЭР-1200 Ленинградской АЭС-2. ОАО «СПб АЭП» (входит в состав интегрированной компании ОАО «Атомэнергопром») по итогам открытого конкурса 14 марта 2008 года подписало с Росатомом госконтракт на «выполнение комплекса работ по сооружению и вводу в эксплуатацию энергоблоков №№ 1 и 2 Ленинградской АЭС-2, включая проектно-изыскательские, строительно-монтажные, пусконаладочные работы, поставку оборудования, материалов и изделий». В июне 2008 года и июле 2009 года Ростехнадзор выдал лицензии на сооружение энергоблоков.

Нововоронежская АЭС-2
Расположение: близ г. Нововоронежа (Воронежская обл.)
Тип реактора: ВВЭР-1200
Энергоблоков: 2 – строятся, еще 2 – в проекте
Нововоронежская АЭС-2 строится на площадке действующей станции. Генеральным подрядчиком по сооружению Нововоронежской АЭС-2 выступает ОАО «Атомэнергопроект» (г. Москва). Проект предусматривает использование реакторной установки ВВЭР мощность до 1200 МВт (электрических) со сроком эксплуатации 60 лет. Первая очередь Нововоронежской АЭС-2 будет включать два энергоблока.

Плавучая АЭС «Академик Ломоносов»
Расположение: г. Вилючинск, Камчатский край
Тип реактора: КЛТ-40С
Энергоблоков: 2
Первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) оснащена судовыми реакторами типа КЛТ-40С. Аналогичные реакторные установки имеют большой опыт успешной эксплуатации на атомных ледоколах «Таймыр» и «Вайгач» и лихтеровозе «Севморпуть». Электрическая мощность станции составит 70 МВт. Основной элемент станции – плавучий энергоблок сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения ПАТЭС морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО «Севмаш», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока. В 2013 планируется начало опытно-промышленной эксплуатации. ПАТЭС будет размещена в городе Вилючинске Камчатского края.

Центральная АЭС
Расположение: близ г. Буй (Костромская обл.)
Тип реактора: ВВЭР-1200
Энергоблоков: 2
Центральную АЭС предполагается разместить в 5 км на северо-запад от города Буй, на правом берегу реки Костромы. Генеральным проектировщиком выступает ОАО «Атомэнергопроект». Планируется, что до конца 2010 года будут утверждены материалы обоснования инвестиций и получена лицензия на размещение АЭС. Строительство станции предполагается осуществить в 2013-2018 годы.

В разной стадии находится проработка планов сооружения также Нижегородской АЭС (Навашинский район Нижегородской обл., 2 энергоблока ВВЭР-1200), Северской АЭС (ЗАТО Северск, Томская обл., 2 энергоблока ВВЭР-1200).
Если говорить о статусе «выведенные из эксплуатации», то в настоящий момент его имеет лишь Обнинская АЭС. Это первая в мире АЭС, которая была запущена в 1954 году и остановлена в 2002 году. В настоящее время на базе станции создается музей.

Планируемые АЭС (

(3 оценок, среднее: 5,00 из 5)

Находки в госучреждениях Припяти

После тушения пожара от взрыва на Чернобыльской АЭС исполненные героизма ликвидаторы еще очень долго работали над устранением последствий аварии. Радиус поражения от Чернобыльской АЭС достиг даже Северной Америки и Японии.

Вертолет над Чернобыльской АЭС

Первостепенными задачами, поставленными перед профессионалами, были дезактивация Припяти и уборка радиоактивной пыли, осевшей на крышах домов и сохранившихся в целостности энергоблоков АЭС.

После аварии люди Припяти впервые начали осознавать всю опасность «радиации» – врага, которого нельзя увидеть.

Ликвидация последствий была достаточно нелегкой. Ведь приходилось искать особенные методы в борьбе с радиацией, смертельными элементами и пылью, осевшей по всей округе. Тогда в бой вступили вертолеты.

Пожарная часть Припяти

Во время каждого полета, а таких было по 5-6 за смену, необходимо было сливать тонны клея ПВА на крыши энергоблоков. Подобную пыль не уберешь ни пылесосом, ни веником. Именно поэтому для работников ЧАЭС вертолет с клеем был остро необходим. После застывания клей разрезали, сворачивали в рулон и отправляли на уничтожение.

Важную миссию по сбору радиационной пыли выполняли вертолеты Ми-8, Ми-24, Ми-26 и Ми-6.

Устраняя последствия произошедшего 26 апреля люди рисковали своими жизнями. Прежде всего поражала ликвидаторов ЧАЭС лучевая болезнь. Однако тогда никто из этих героев не думал о себе, вступая в бой с невидимым врагом.

Момент крушения вертолета над ЧАЭС

Падение вертолета на Чернобыльской АЭС

Каждый из ликвидаторов очень серьезно относился к тому, что делает. Но никто даже не подозревал, что после трагедии на ЧАЭС, может случиться еще одна.

Двадцать четыре года, которые прошли после аварии на Чернобыльской АЭС, не сильно помогли жителям пораженных территорий -- обследованные области выглядят на страницах атласа пораженными тяжелой аллергией. И выздоравливать им еще очень долго.

Радиоактивная книга

«Атлас современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси» – именно так звучит его полное название – позволяет реально оценить степень радиоактивного загрязнения территорий, пострадавших от этой крупнейшей в истории человечества техногенной катастрофы. Серия карт атласа показывает, как менялась ситуация с момента аварии до настоящего времени. В нем есть и прогнозные карты, предсказывающие динамику радиоактивного загрязнения до 2056 года.

Знакомство с картами атласа позволяет сделать неутешительные выводы. Несмотря на то что с момента аварии прошло 24 года и большая часть радиоактивных элементов с коротким периодом полураспада уже исчезла, а такие, например, как цезий-137 продолжают свой распад, на картах прекрасно видно, что даже сейчас многие районы и населенные пункты Брянской, Калужской, Тульской и Гомельской областей имеют уровни загрязнения, превышающие безопасные для жизни. На картах эти районы выделены малиновым цветом. Фактически, за этими яркими пятнами стоят жизни людей, живущих на этих территориях.

Катастрофа

Авария произошла на Чернобыльской АЭС 26 апреля 1986 года. В результате теплового взрыва четвертого блока АЭС в атмосферу попал практически весь набор радионуклидов, которые находились в реакторе в момент взрыва – всего 21 элемент. У большинства этих элементов период полураспада составляет не больше двух-трех лет. Есть элементы, у которых периоды полураспада огромны -- например, у трансурановых радионуклидов (у плутония-239 он составляет 24 110 лет), но при этом у них низкая летучесть: дальше 60 км они от реактора не распространяются. Из всего большого списка радиоактивных элементов, оказавшихся в атмосфере, наибольшую опасность представляют изотопы цезия-137 и стронция-90. Это связано с несколькими причинами. Цезий-137 -- долгоживущий радионуклид (период его полураспада составляет 30 лет), он хорошо сохраняется в ландшафте и включается в жизнь экосистемы, кроме того, именно этот элемент распространился на самые большие расстояния от АЭС.

Если говорить о характере распространения радиоактивного загрязнения после аварии, то ученые считают, что на процесс повлияли прежде всего метеорологическая ситуация и движение воздушных частиц в течение нескольких суток после катастрофы. По данным, представленным в атласе, с 26 по 29 апреля 1986 года радиоактивные вещества перемещались в приземном слое на высоте 200 м в северо-западном, северном и северо-восточном направлении от ЧАЭС. Уже потом, до 7-8 мая, перенос продолжился в юго-западном и южном направлении. При этом практически сразу после выброса на высоте нескольких километров к процессу подключился западный перенос воздушных масс – так сформировался восточный чернобыльский след -- пятна радиоактивного загрязнения, дошедшие до стран Европы. Эти пятна встречались в Австрии, Великобритании, Германии, Греции, Италии, Норвегии, Польше, Швеции, Румынии, Словакии, Словении, Чехии, Швейцарии, Финляндии.

Безусловно, сильнее всего пострадали территории, расположенные рядом с АЭС, -- Украины, европейской части России и Белоруссии. Площадь земель, где плотность загрязнения оставила более 37 кБк/м 2 (это тот уровень, выше которого проживание на данной территории представляет опасность) на европейской части России составляет 60 тыс. км 2 , на территории Украины -- 38 тыс. км 2 , а Белоруссии -- 46 тыс. км 2 . Самые высокие уровни загрязнения на территории России оказались в Брянской, а затем в Тульской и Калужской областях. В Белоруссии это Гомельская область.

Загрязнение России

Составители атласа за эти годы неоднократно обходили зараженные зоны и измеряли содержание радиоактивных изотопов в почве. Это позволило им создать динамическую картину освобождения земель от радиации. Впрочем, как показывают карты, наступит такое освобождение еще не скоро.

Так, почти половина Брянской области остается сильно загрязненной до сих пор. Фактически, более или менее свободными можно считать центральную и северо-западную зоны, ограниченные городами Брянск, Жуковка, Сураж и Почеп. Сильнее всего, конечно, досталось западной части Брянской области (к западу от Стародуба и Клинцов). В «красной» зоне находятся такие города и селенья, как Новозыбков, Злынка, Вышков, Святск, Ущерлье, Верещаки, Мирный, Яловка, Перелазы, Николаевка, Ширяево, Заборье, Красная гора... Но и жителям южных районов Брянщины необходимо в обязательном порядке обследоваться у онкологов. Тем более что отчужденные от вырубки леса перерастают и периодически горят, выбрасывая в воздух все новые и новые порции стронция и цезия. Да и на севере, в районе городов Дятьково и Фокино (особенно между ними -- около Любохны) концентрация радионуклидов почти достигает порога отселения.

В сильно пораженной зоне Калужской области (южные районы) остаются до 30 поселков и городков Спас-Деменского, Кировского, Людиновского, Жиздринского и Козельского районов области. Наиболее опасные концентрации радиоактивных изотопов остаются в районах Афанасьево, Мелехово, Кирейково, Дудоровского, Кцыни, Судимира и Коренево.

Орловскую область в 1986 году накрыло почти полностью -- более или менее чистым остался лишь юго-восточный угол региона. Самые же сильные дозы радиации пришлись на жителей Болховского района (север области) и территорий чуть южнее Орла. Как показывают более поздние измерения, Ливнинский район по-прежнему остается единственным по-настоящему пригодным для жизни с точки зрения радиоактивного заражения. А жителям как самого Орла, так и всех остальных районов области (особенно Болховского) без дозиметра никуда ходить не стоит.

Тульскую область облако поделило пополам. Зона севернее и северо-западнее Тулы осталась относительно чистой, зато все, что южнее областного центра, попало в зону радиоактивных осадков. Центром наиболее загрязненной области стал город Плавск. А тянется она с западного края Тульской области длинным языком, доходящим до Узловой.

Сейчас, когда почти половина цезия-137 распалась, опасная для жизни зона (с правом отселения) съежилась вокруг Плавска. Однако зона особого контроля за этот период уменьшилась не сильно, что говорит о достаточно высокой концентрации опасного для здоровья изотопа.

Загрязнение Белоруссии

Брестская, самая западная из обследованных областей, получила основной радиоактивный заряд в правый бок, от Лулинца и восточнее. Хотя из-за рельефа местности радиоактивные осадки также выпали в районе городов Дрогичин, Пинск, а также сел Святая Воля, Смоляница, Лысково и Молчадь. К 2010 году зоны проживания с правом отселения сохранились вокруг города Столин и в районе сел Вулька-2 и Городная.

В Гомельской области все, конечно, намного хуже. До сих пор юг области (южнее городов Ельск и Хойники) покрыт красно-фиолетовыми пятнами заражения, слабо совместимого со здоровой и долгой жизнью. Впрочем, то же самое можно сказать о районе, который начинается от Гомеля и тянется до северного и восточного краев области. Самая благоприятная зона здесь проходит под категорией «проживание с правом на отселение». Почти вся остальная территория области относится к зоне с проживанием под особым контролем радиологов.

Наиболее пораженные зоны Гродненской области (восток, линия Слоним-Дятлово-Березовка--Ивье--Юратишки, а также линия Березовка--Лида и Ивье--Красное) попали лишь в категорию зон с проживанием под радиационным контролем. Здесь годовая эффективная доза не превышает 1 мЗв. Что, впрочем, при длительном воздействии тоже довольно много.

В Минской области попали под радиоактивное обласко окраины -- юг Солигорского района, западный Волжинский район, восточный Березинский, а также относительно небольшая территория, лежащая на границе Вилейского и Логойского районов к северу от Минска. Центр северной зоны -- деревня Янушковичи. Впрочем, несмотря на локальность поражения, центры радиоактивных территорий опасны настолько, что до сих пор проходят по категории «проживание с правом на отселение».

Лежащей к северу от Гомельской Могилевской области повезло куда меньше -- облако прошлось по самому центру региона. Поэтому зона, ограниченная городами Кировск, Кличев, Могилев, Чаусы, Кричев, Климовичи и Костюковичи, остается слабо пригодной для жизни, а местами -- и противопоказанной. Правда, за эти 24 года вышеуказанные города оказались вне указанной зоны и теперь ограничивают ее снаружи. За исключением Могилева, который до сих пор находится в зоне с проживанием под радиационным контролем, а также Чаус, которые благодаря активности местных изотопов до сих пор остаются в зоне проживания с правом на отселение.

Загрязнения стронцием-90 сконцентрировались в Гомельской области, особенно на юге. Вторая из больших зон поражения находится на северо-востоке области.

Будущее

Хотя составители атласа утверждают, что уровень радиоактивности на пораженных территориях сильно снизился (и это действительно так), прогноз не утешителен даже на 2056 год: хотя к этому времени ареалы распространения цезия-137 и стронция-90 еще уменьшатся, локально все равно останутся зоны с превышением предельно допустимых значений. Так, зоны отчуждения исчезнут с территории России лишь в 2049 году. Зоны приоритетного отселения -- лишь к 2100 году, а сказать, что радиационный фон в них немного превышает естественный, ученые не кривя душой смогут лишь к 2400 году. Для Белоруссии, получившей более серьезные повреждения, эти сроки еще более сдвинуты. Даже в 2056 году (это последний год, на который составители атласа делают четкий прогноз) Гомельская область выглядит, как человек с запущенной аллергией.

Выпущен атлас под эгидой МЧС России и Белоруссии. Несмотря на то что сама катастрофа произошла на территори Украины, ее МНС в проекте не участвовало. И карт поражения украинских территорий, соответственно, в атласе нет. Тем не менее в ближайшее время сайт расскажет, что сейчас происходит в самой главной зоне отчуждения и ее окрестностях.

После аварии на Чернобыльской АЭС радионуклидному загрязнению на территории России подверглись Брянская, Тульская, Орловская и Калужская области. Эти территории прилегают к северной границе Украины и находятся на расстоянии 100 – 550 км от источника выброса радиоактивных веществ. Для информирования общественности и населения проживающего на загрязненных территориях МЧС России подготовило Атлас современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси. Указанный Атлас содержит набор карт, которые отображают пространственные особенности радионуклидного загрязнения территории России как в прошлом – в 1986 году, так и современное состояние. Также ученые подготовили прогнозных уровней загрязнения территории России с шагом в 10 лет вплоть до 2056 года.

Карта загрязнения Европы радиоактивными выпадениями после 1986 года

Загрязнение территории России радионуклидами в 70-х годах и в 80-х

В 1986 году на некоторых загрязненных территориях Российской Федерации была выполнена эвакуация населения. Всего было эвакуировано 186 человек (в Украине было эвакуировано 113 000 человек из зоны радиоактивного заражения, в Беларуси — 24725 человек).
На загрязненных территория проводились широкомасштабные работы по дезактивации (очистке) населенных пунктов и прилегающих территорий (дорог). За период с 1986 – 1987 годов в России было дезактивировано 472 населенных пункта Брянской области (западные районы). Дезактивация проводилась силами армии, которая выполняла промывку зданий, очистку территории жилых районов, уборку верхнего слоя загрязненного грунта, обеззараживание источников питьевого водоснабжения, уборку дорог. Армейские подразделения проводили систематические работы по пылеподавлению – увлажняли дороги в населенных пунктах. К 1989 году радиационная обстановка на загрязненных территориях существенно улучшилась и стабилизировалась.

Загрязнение территории России сегодня

При подготовке карт современного загрязнения территории России радионуклидами, учены проводили комплексные исследования, которые включали оценку распределения цезия-137, стронция-90 и трансурановых элементов по почвенному профилю. Было установлено, что радиоактивные вещества все еще содержатся в верхнем 0-20 см слое почвы. Таким образом, радионуклиды находятся в корнеобитаемом слое и вовлекаются в биологические цепи миграции.
Максимальные уровни загрязнения территории России стронцием-90 и плутонием-239,240 чернобыльского происхождения находятся в западной части Брянской области – где уровни загрязнения по 90Sr составляют порядка 0,5 Кюри/кв.км, а 239, 240Pu – 0,01 – 0,1 Кюри/кв.км.

Карта загрязнения территории Брянской, Калужской, Орловской и Тульской областей стронцием-90.

Карта загрязнения территории Брянской области плутонием 239, 240

Карты загрязнения России 137 Cs чернобыльского происхождения

Карты загрязнения Брянской области 137 Cs

Брянская область является самой неблагополучной в радиационном плане. Западные районы районы области еще долгое время будут загрязнены радиоизотопами цезия. По прогнозным оценкам в 2016 году, в районе населенных пунктов Новозыбков, Злынка, уровни поверхностного загрязнения цезия-137 будут достигать 40 Кюри на квадратный километр.

Карта загрязнения территории Брянской области цезием-137 (по состоянию на 1986 год)

Карта загрязнения территории Брянской области цезием-137 (по состоянию на 1996 год)

Карта загрязнения территории Брянской области (по состоянию на 2006 год)

Карта прогнозного загрязнения территории Брянской области (по состоянию на 2016 год)

Карта прогнозного загрязнения территории Брянской области (по состоянию на 2026 год)

Карта прогнозного загрязнения территории Брянской области в 2056 году.

Карты загрязнения 137 Cs Орловской области

1986 году.

Карта загрязнения цезием-137 территории Орловской области в 1996 году.

Карта загрязнения цезием-137 территории Орловской области в 2006 году.

2016 году.

Карта прогнозного загрязнения цезием-137 территории Орловской области в 2026 году.

Карта прогнозного загрязнения цезием-137 территории Орловской области в 2056 году.

Карты загрязнения 137 Cs Тульской области

1986 году

Карта загрязнения цезием-137 территории Тульской области в 1996 году

Карта загрязнения цезием-137 территории Тульской области в 2006 году

Карта прогнозного загрязнения цезием-137 территории Тульской области в 2016 году

2026 году

Карта прогноза загрязнения цезием-137 территории Тульской области в 2056 году

Карты загрязнения 137 Cs Калужской области

Карта загрязнения 137Cs Калужской области в 1986 году

Карта загрязнения 137Cs Калужской области в 1996 году

Карта загрязнения 137Cs Калужской области в 2006 году

2016 году

Карта прогнозного загрязнения 137Cs Калужской области в 2026 году

Карта прогнозного загрязнения 137Cs Калужской области в 2056 году

Материал подготовлен на основании Атласа современных и прогнозных аспектов последствий аварии на Чернобыльской АЭС на пострадавших территориях России и Беларуси , под редакцией академика Российской академии наук Ю.А.Израэля и академика Национальной академии наук Беларуси И.М. Богдевича. 2009 год.