Виды ускорения физика. Формула ускорения. Среднее и мгновенное ускорение

Рассмотрим более детально, что такое ускорение в физике? Это сообщение телу дополнительной скорости за единицу времени. В Международной системе единиц (СИ) за единицу ускорения принято считать количество метров, пройденных за секунду (м/с). Для внесистемной единицы измерения Гал (Gal), которая применяется в гравиметрии, ускорение равно 1 см/с 2 .

Виды ускорений

Что такое ускорение в формулах. Вид ускорения зависит от вектора движения тела. В физике это может быть движение по прямой, по кривой линии и по окружности.

  1. Если предмет движется по прямой линии, движение будет равноускоренным, и на него начнут действовать линейные ускорения. Формула для его вычисления (смотри формулу 1 на рис): a=dv/dt
  2. В случае, если речь идет о движении тела по окружности, то ускорение будет состоять из двух частей (a=a т +a n): тангенциального и нормального ускорения. Оба они характеризуются скоростью движения предмета. Тангенциальное - изменением скорости по модулю. Его направление идет по касательной к траектории. Такое ускорение вычисляется по формуле (см. формулу 2 на рис): a t =d|v|/dt
  3. Если же скорость движения предмета по окружности постоянна, ускорение называется центростремительным или нормальным. Вектор такого ускорения постоянно направлен к центру окружности, а значение модуля равно (смотри формулу 3 на рис): |a(вектор)|=w 2 r=V 2 /r
  4. Когда скорость тела по окружности разная, возникает угловое ускорение. Оно показывает, как изменилась угловая скорость за единицу времени и равно (см. формулу 4 на рис.):E(вектор)=dw(вектор)/dt
  5. В физике также рассматриваются варианты, когда тело движется по окружности, но при этом приближается или удаляется от центра. В этом случае на предмет действуют ускорения Кориолиса.Когда тело движется по кривой линии, вектор его ускорения будет вычисляться по формуле (см. формулу 5 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)+a b b(вектор),в которой:
  • v - скорость
  • T (вектор) - единичный касательный к траектории вектор, идущий вдоль скорости (касательный орт)
  • n (вектор) - орт главной нормали относительно траектории, который определяется как единичный вектор в направлении dT (вектор)/dl
  • b (вектор) - орт бинормали относительно траектории
  • R - радиус кривизны траектории

При этом бинормальное ускорение a b b(вектор) всегда равно нулю. Поэтому конечная формула выглядит так (см. формулу 6 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)

Что такое ускорение свободного падения?

Ускорением свободного падения (обозначается буквой g) называется ускорение, которое придается предмету в вакууме силой тяжести. Согласно второму закону Ньютона, такое ускорение равно силе тяжести, которая воздействует на объект единичной массы.

На поверхности нашей планеты значением g принято называть 9,80665 или 10 м/с². Для вычисления реального g на поверхности Земли нужно будет учесть некоторые факторы. Например, широту и время суток. Так что значение истинного g может быть от 9,780 м/с² до 9,832 м/с² на полюсах. Для его вычисления применяют эмпирическую формулу (см. формулу 7 на рис), в которой φ - широта местности, а h - расстояние над уровнем моря, выраженное в метрах.

Формула для вычисления g

Дело в том, что такое ускорение свободного падения состоит из гравитационного и центробежного ускорения. Примерное значение гравитационного можно подсчитать, представляя Землю однородным шаром с массой M, и вычисляя ускорение на протяжении её радиуса R (формула 8 на рис, где G - гравитационная постоянная величина со значением 6,6742·10 −11 м³с −2 кг −1).

Если использовать эту формулу для вычисления гравитационного ускорения на поверхности нашей планеты (масса М = 5,9736·10 24 кг, радиус R = 6,371·10 6 м), получится формула 9 на рис, однако данное значение условно совпадает с тем, что такое скорость, ускорение в конкретном месте. Несоответствия объясняются несколькими факторами:

  • Центробежным ускорением, имеющим место в системе отсчёта вращения планеты
  • Тем, что планета Земля не шарообразной формы
  • Тем, что наша планета неоднородна

Приборы для измерения ускорения

Ускорение принято измерять акселерометром. Но он вычисляет не само ускорение, а силу реакции опоры, возникающую при ускоренном движении. Такие же силы сопротивления появляются и в поле тяготения, поэтому акселерометром можно измерять и гравитацию.

Есть еще один прибор для измерения ускорения – акселерограф. Он вычисляет и графически фиксирует значения ускорения поступательного и вращательного движения.

В курсе физики VII класса вы изучали самый простой вид движения - равномерное движение по прямой линии. При таком движении скорость тела была постоянной и тело за любые равные промежутки времени проходило одинаковые пути.

Большинство движений, однако, нельзя считать равномерными. На одних участках тела могут иметь меньшую скорость, на других - большую. Например, поезд, отходящий от станции, начинает двигаться все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Проделаем опыт. Установим на тележку капельницу, из которой через одинаковые промежутки времени падают капли окрашенной жидкости. Поместим эту тележку на наклонную доску и отпустим. Мы увидим, что расстояние между следами, оставленными каплями, по мере движения тележки вниз будет становиться все больше и больше (рис. 3). Это означает, что за равные промежутки времени тележка проходит неодинаковые пути. Скорость тележки возрастает. Причем, как можно доказать, за одни и те же промежутки времени скорость тележки, съезжающей по наклонной доске, возрастает все время на одну и ту же величину.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным.

Так, например, опытами установлено, что скорость любого свободно падающего тела (при отсутствии сопротивления воздуха) за каждую секунду возрастает примерно на 9,8 м/с, т. е. если вначале тело покоилось, то через секунду после начала падения оно будет иметь скорость 9,8 м/с, еще через секунду - 19,6 м/с, еще через секунду - 29,4 м/с и т. д.

Физическая величина, показывающая, на сколько изменяется скорость тела за каждую секунду равноускоренного движения, называется ускорением.

a - ускорение.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с 2 и называют «метр на секунду в квадрате».

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 10 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т. е. в 10 раз быстрее, чем при ускорении 1 м/с 2 .

Примеры ускорений, встречающихся в нашей жизни, можно найти в таблице 1.


Как рассчитывают ускорение, с которым тела начинают двигаться?

Пусть, например, известно, что скорость отъезжающего от станции электропоезда за 2 с увеличивается на 1,2 м/с. Тогда, для того чтобы узнать, на сколько она возрастает за 1 с, надо 1,2 м/с разделить на 2 с. Мы получим 0,6 м/с 2 . Это и есть ускорение поезда.

Итак, чтобы найти ускорение тела, начинающего равноускоренное движение, надо приобретенную телом скорость разделить на время, за которое была достигнута эта скорость:

Обозначим все величины, входящие в это выражение, латинскими буквами:

a - ускорение; v - приобретенная скорость; t - время.

Тогда формулу для определения ускорения можно записать в следующем виде:

Эта формула справедлива для равноускоренного движения из состояния покоя, т. е. когда начальная скорость тела равна нулю. Начальную скорость тела обозначают Формула (2.1), таким образом, справедлива лить при условии, что v 0 = 0.

Если же нулю равна не начальная, а конечная скорость (которая обозначается просто буквой v ), то формула ускорения принимает вид:

В таком виде формулу ускорения применяют в тех случаях, когда тело, имеющее некоторую скорость v 0 , начинает двигаться все медленнее и медленнее, пока наконец не остановится (v = 0). Именно по этой формуле, например, мы будем рассчитывать ускорение при торможении автомобилей и других транспортных средств. Под временем t при этом мы будем понимать время торможения.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. 4, а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. 4, б).

При равномерном прямолинейном движении скорость тела не изменяется. Поэтому ускорение при таком движении отсутствует (a = 0) и на рисунках изображено быть не может.

1. Какое движение называют равноускоренным? 2. Что такое ускорение? 3. Что характеризует ускорение? 4. В каких случаях ускорение равно нулю? 5. По какой формуле находится ускорение тела при равноускоренном движении из состояния покоя? 6. По какой формуле находится ускорение тела при уменьшении скорости движения до нуля? 7. Как направлено ускорение при равноускоренном прямолинейном движении?

Экспериментальное задание. Используя линейку в качестве наклонной плоскости, положите на ее верхний край монету и отпустите. Будет ли двигаться монета? Если будет, то как - равномерно или равноускоренно? Как это зависит от угла наклона линейки?

За секунду (русское обозначение: м/с 2 ; международное: m/s 2 ).

Ускорение в кинематике точки

Наиболее общий случай

Ускорение и связанные величины

a → = d v → d t = d 2 r → d t 2 . {\displaystyle {\vec {a}}={d{\vec {v}} \over dt}={d^{2}{\vec {r}} \over dt^{2}}.}

Если на траектории точки известны координаты r → (t 0) = r → 0 {\displaystyle {\vec {r}}(t_{0})={\vec {r}}_{0}} и вектор скорости v → (t 0) = v → 0 {\displaystyle {\vec {v}}(t_{0})={\vec {v}}_{0}} в какой-либо момент времени t 0 , а также зависимость ускорения от времени a → (t) , {\displaystyle {\vec {a}}(t),} то, интегрируя это уравнение, можно получить координаты и скорость точки в любой момент времени t (как до, так и после момента t 0 ):

v → (t) = v → 0 + ∫ t 0 t a → (τ) d τ , {\displaystyle {\vec {v}}(t)={\vec {v}}_{0}+\int _{t_{0}}^{t}{\vec {a}}(\tau)d\tau ,} r → (t) = r → 0 + (t − t 0) v → 0 + ∫ t 0 t ∫ t 0 ξ a → (τ) d τ d ξ . {\displaystyle {\vec {r}}(t)={\vec {r}}_{0}+(t-t_{0}){\vec {v}}_{0}+\int _{t_{0}}^{t}\int _{t_{0}}^{\xi }{\vec {a}}(\tau)d\tau d\xi .} j → = d a → d t , {\displaystyle {\vec {j}}={\frac {\mathrm {d} {\vec {a}}}{\mathrm {d} t}},} где j → {\displaystyle {\vec {j}}} - вектор рывка.

Анализ движения по кривой

Траекторию движения материальной точки на малом участке можно считать плоской. Вектор ускорения можно разложить по сопутствующему базису { τ → , n → , b → } : {\displaystyle \left\{{\vec {\tau }},{\vec {n}},{\vec {b}}\right\}:}

a → = a τ τ → + a n n → + a b b → = d v d t τ → + v 2 R n → + a b b → , {\displaystyle {\vec {a}}={a}_{\tau }{\vec {\tau }}+{a}_{n}{\vec {n}}+{a}_{b}{\vec {b}}={\frac {dv}{dt}}{\vec {\tau }}+{\frac {v^{2}}{R}}{\vec {n}}+{a}_{b}{\vec {b}},} v {\displaystyle v\ } - величина скорости, τ → = v → / | v → | {\displaystyle {\vec {\tau }}={\vec {v}}/|{\vec {v}}|} - единичный касательный к траектории вектор, направленный вдоль скорости (касательный орт), - орт главной нормали к траектории, который можно определить как единичный вектор в направлении d τ → / d l , {\displaystyle d{\vec {\tau }}/dl,} b → {\displaystyle {\vec {b}}} - орт бинормали к траектории, перпендикулярный одновременно ортам τ → {\displaystyle {\vec {\tau }}} и n → {\displaystyle {\vec {n}}} (то есть ортогональный к мгновенной плоскости траектории), R {\displaystyle R} - радиус кривизны траектории.

Слагаемое a b b → , {\displaystyle {a}_{b}{\vec {b}},} называемое бинормальным ускорением, всегда равно нулю. Это можно считать прямым следствием определения векторов n → , b → : {\displaystyle {\vec {n}},{\vec {b}}:} можно сказать, что они выбираются именно так, чтобы первый всегда совпадал с нормальным ускорением, второй же был ортогонален первому.

Векторы a τ τ → {\displaystyle {a}_{\tau }{\vec {\tau }}} и a n n → {\displaystyle {a}_{n}{\vec {n}}} называются касательным (тангенциальным) и нормальным ускорениями соответственно.

Итак, учитывая сказанное выше, вектор ускорения при движении по любой траектории можно записать как:

a → = a τ τ → + a n n → = d v d t τ → + v 2 R n → . {\displaystyle {\vec {a}}={a}_{\tau }{\vec {\tau }}+{a}_{n}{\vec {n}}={\frac {dv}{dt}}{\vec {\tau }}+{\frac {v^{2}}{R}}{\vec {n}}.}

Важные частные случаи

Равноускоренное движение

Если вектор a → {\displaystyle {\vec {a}}} не меняется со временем, движение называют равноускоренным . При равноускоренном движении вышеприведённые общие формулы упрощаются до следующего вида:

v → (t) = v → 0 + (t − t 0) a → , {\displaystyle {\vec {v}}(t)={\vec {v}}_{0}+(t-t_{0}){\vec {a}},} r → (t) = r → 0 + (t − t 0) v → 0 + (t − t 0) 2 2 a → . {\displaystyle {\vec {r}}(t)={\vec {r}}_{0}+(t-t_{0}){\vec {v}}_{0}+{(t-t_{0})^{2} \over 2}{\vec {a}}.}

Частным случаем равноускоренного движения является случай, когда ускорение равно нулю в течение всего времени движения. В этом случае скорость постоянна, а движение происходит по прямолинейной траектории (если скорость тоже равна нулю, то тело покоится), поэтому такое движение называют прямолинейным и равномерным.

Равноускоренное движение точки всегда является плоским, а твёрдого тела - плоскопараллельным (поступательным). Обратное, вообще говоря, неверно.

Равноускоренное движение при переходе в другую инерциальную систему отсчёта остаётся равноускоренным.

Случай равноускоренного движения, когда ускорение (постоянное) и скорость направлены по одной прямой, но в разных направлениях, называется равнозамедленным движением. Равнозамедленное движение всегда одномерно. Движение можно рассматривать как равнозамедленное лишь до того момента, пока скорость не станет равной нулю. Кроме того, всегда существуют инерциальные системы отсчёта, в которых движение не является равнозамедленным.

Прямолинейное движение

Важным частным случаем движения с ускорением является прямолинейное движение, когда ускорение в любой момент времени коллинеарно скорости (например, случай падения тела с вертикальной начальной скоростью). В случае прямолинейного движения можно выбрать одну из координатных осей вдоль направления движения и заменить радиус-вектор и векторы ускорения и скорости на скаляры. При постоянном ускорении из приведённых выше формул вытекает, что

v 2 = u 2 + 2 a s . {\displaystyle v^{2}=u^{2}+2\,as.}

Здесь u и v - начальная и конечная скорость тела, a - его ускорение, s - пройденный телом путь.

Ряд практически важных формул связывают затраченное время, пройденный путь, достигнутую скорость и ускорение при равноускоренном прямолинейном движении с нулевой начальной скоростью:

t = 2 s a = v a = 2 s v , s = v t 2 = a t 2 2 = v 2 2 a , {\displaystyle t={\sqrt {\frac {2s}{a}}}={\frac {v}{a}}={\frac {2s}{v}},\qquad \qquad s={\frac {vt}{2}}={\frac {at^{2}}{2}}={\frac {v^{2}}{2a}},} v = 2 a s = a t = 2 s t , a = v t = 2 s t 2 = v 2 2 s , {\displaystyle v={\sqrt {2\,as}}=at={\frac {2s}{t}},\qquad \qquad a={\frac {v}{t}}={\frac {2s}{t^{2}}}={\frac {v^{2}}{2s}},}

так что любые две из этих величин определяют две другие (здесь предполагается, что время отсчитывается от начала движения, t 0 = 0 ).

Движение по окружности

Вектор ускорения

a → = d v → d t {\displaystyle {\vec {a}}={\frac {d{\vec {v}}}{dt}}}

при движении точки по окружности можно разложить на два слагаемых (компоненты):

a → = a → τ + a → n . {\displaystyle {\vec {a}}={\vec {a}}_{\tau }+{\vec {a}}_{n}.} a → B = a → A + [ ω → × [ ω → × A B → ] ] + [ ε → × A B → ] , {\displaystyle {\vec {a}}_{B}={\vec {a}}_{A}+\left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {AB}}\right]\right]+\left[{\vec {\varepsilon }}\times {\vec {AB}}\right],}

где ε → {\displaystyle {\vec {\varepsilon }}} - вектор углового ускорения тела.

Второе слагаемое называется осестремительным ускорением , а третье - вращательным ускорением .

Создание ускорения. Динамика точки

Классическая механика

u i a i = 0 . {\displaystyle u_{i}a^{i}=0\,.}

Это означает, в частности, что 4-скорости меняются не по модулю, а лишь по направлению: независимо от направления в пространстве-времени 4-скорость любого тела равна по модулю скорости света. Геометрически, 4-ускорение совпадает с кривизной мировой линии и является аналогом нормального ускорения в классической кинематике.

В классической механике значение ускорения не изменяется при переходе от одной инерциальной системы отсчета к другой, то есть ускорение инвариантно относительно преобразований Галилея . В релятивистской механике 4-ускорение является 4-вектором, то есть при преобразованиях Лоренца изменяется аналогично пространственно-временным координатам.

"Обычный" трёхмерный вектор ускорения (то же, что a → (t) {\displaystyle {\vec {a}}(t)} в предыдущих разделах, обозначение заменено во избежание путаницы с 4-ускорением), определяемый как производная "обычной" трёхмерной скорости v → {\displaystyle {\vec {v}}} по координатному времени w → = d v → / d t {\displaystyle {\vec {w}}=d{\vec {v}}/dt} , применяется и в рамках релятивистской кинематики, но инвариантом преобразований Лоренца не является. В мгновенно сопутствующей инерциальной системе отсчёта 4-ускорение - это a = (0 , w →) . {\displaystyle a=(0,{\vec {w}}).} При действии постоянной силы ускорение точки w → {\displaystyle {\vec {w}}} уменьшается с ростом скорости, однако 4-ускорение остаётся неизменным (такой случай именуют

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!