Виды колебаний гармонические колебания. Гармонические колебания — Гипермаркет знаний

§ 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Уравнение гармонических колебаний

где х - смещение колеблющейся точки от положения равновесия; t - время; А, ω, φ- соответственно амплитуда, угловая частота, начальная фаза колебаний; - фаза колебаний в моментt .

Угловая частота колебаний

где ν и Т - частота и период колебаний.

Скорость точки, совершающей гармонические колебания,

Ускорение при гармоническом колебании

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a 1 и А 2 - амплитуды составляющих колебаний; φ 1 и φ 2 - их начальные фазы.

Начальная фаза φ результирующего колебания может быть найдена из формулы

Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν 1 и ν 2 ,

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A 1 и A 2 и начальны­ми фазами φ 1 и φ 2 ,

Если начальные фазы φ 1 и φ 2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или ,где m - масса точки; k - коэффициент квазиупругой силы (k =т ω 2).

Полная энергия материальной точки, совершающей гармони­ческие колебания,

Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m - масса тела; k - жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l - длина маятника; g - ускорение свободного падения. Период колебаний физического маятника

где J - момент инерции колеблющегося тела относительно оси

колебаний; а - расстояние центра масс маятника от оси колебаний;

Приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не болееошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J - момент инерции тела относительно оси, совпадающей с упругой нитью; k - жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

Дифференциальное уравнение затухающих колебаний , или ,

где r - коэффициент сопротивления; δ - коэффициент затухания: ;ω 0 - собственная угловая частота колебаний *

Уравнение затухающих колебаний

где A (t) - амплитуда затухающих колебаний в момент t; ω - их угловая частота.

Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А 0 - амплитуда колебаний в момент t =0.

Логарифмический декремент колебаний

где A (t) и A (t+T) - амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

где - внешняя периодическая сила, действующая наколеблющуюся материальную точку и вызывающая вынужденные колебания; F 0 - ее амплитудное значение;

Амплитуда вынужденных колебаний

Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x (0)=см их , (0)<0. Построить векторную диаграмму для мо-­ мента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

Отсюда найдем начальную фазу:

* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).

Подставим в это выражение заданные значения x (0) и А: φ= =. Значению аргументаудовлетворяютдва значения угла:

Для того чтобы решить, какое из этих значений угла φ удовлет-­ воряет еще и условию , найдем сначала:

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и, найдем

Так как всегдаA >0 и ω>0, то условиюудовлетворяет толь­ко первое значение начальной фазы. Таким образом, искомая начальная фаза

По найденному значению φ постро-­ им векторную диаграмму (рис. 6.1). Пример 2. Материальная точка массой т =5 г совершает гармоничес-­ кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A =3 см. Оп-­ ределить: 1) скорость υ точки в мо-­ мент времени, когда смещение х= = 1,5 см; 2) максимальную силу F max , действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ­ ки.

а формулу скорости получим, взяв первую производную по времени от смещения:

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

, или

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус - ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

где а - ускорение точки, которое получим, взяв производную по времени от скорости:

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор­-мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3 =400 г укреплены шарики малых размеров массами m 1 =200 г и m 2 =300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

гдеJ - т - его масса; l С - расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J 2 и стержня J 3:

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J 3 = =. Подставив полученные выражения J 1 , J 2 и J 3 в формулу (2), найдем общий момент инерции фи-­ зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:

Расстояние l С центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

Подставив значения величин m 1 , m 2 , m , l и произведя вычисле­ния, найдем

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4. Физический маятник представляет собой стержень длиной l = 1 м и массой 3т 1 с прикрепленным к одному из его концов обручем диаметром и массойт 1 . Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

(1)

где J - момент инерции маятника относительно оси колебаний; т - его масса; l C - расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J 1 и обруча J 2:

(2).

Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму-­ ле . В данном случает= 3т 1 и

Момент инерции обруча найдем, восполь-­ зовавшись теоремой Штейнера ,где J - момент инерции относительно про-­ извольной оси; J 0 - момент инерции отно-­ сительно оси, проходящей через центр масс параллельно заданной оси; а - расстояние между указанными осями. Применив эту фор-­ мулу к обручу, получим

Подставив выражения J 1 и J 2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние l С от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J , l с и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T =2,17 с.

Пример 5. Складываются два колебания одинакового направле-­ ния, выражаемых уравнениями ;х 2 = =, гдеА 1 = 1 см, A 2 =2 см, с,с,ω = =. 1. Определить начальные фазыφ 1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

Рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим

где - разность фаз составляющих колебаний.Так как , то, подставляя найденныезначения φ 2 и φ 1 получим рад.

Подставим значения А 1 , А 2 и в формулу(3) и произведем вычисления:

A = 2,65 см.

Тангенс начальной фазы φ результирующего колебания опреде-­ лим непосредственно из рис. 6.4: ,отку-­ да начальная фаза

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Мы рассмотрели несколько физически совершенно различных систем, и убедились, что уравнения движения приводятся к одной и той же форме

Различия между физическими системами проявляются лишь в различном определении величины и в различном физическом смысле переменной x : это может быть координата, угол, заряд, ток и т. д. Отметим, что при этом, как следует из самой структуры уравнения (1.18), величина всегда имеет размерность обратного времени.

Уравнение (1.18) описывает так называемые гармонические колебания .

Уравнение гармонических колебаний (1.18) является линейным дифференциальным уравнением второго порядка (так как оно содержит вторую производную от переменной x ). Линейность уравнения означает, что

    если какая-то функция x(t) является решением этого уравнения, то функция Cx(t) также будет его решением (C – произвольная постоянная);

    если функции x 1 (t) и x 2 (t) являются решениями этого уравнения, то их сумма x 1 (t) + x 2 (t) также будет решением того же уравнения.

Доказана также математическая теорема, согласно которой уравнение второго порядка имеет два независимых решения. Все остальные решения, согласно свойствам линейности, могут быть получены как их линейные комбинации. Непосредственным дифференцированием легко проверить, что независимые функции и удовлетворяют уравнению (1.18). Значит, общее решение этого уравнения имеет вид:

где C 1 , C 2 - произвольные постоянные. Это решение может быть представлено и в другом виде. Введем величину

и определим угол соотношениями:

Тогда общее решение (1.19) записывается как

Согласно формулам тригонометрии, выражение в скобках равно

Окончательно приходим к общему решению уравнения гармонических колебаний в виде:

Неотрицательная величина A называется амплитудой колебания , - начальной фазой колебания . Весь аргумент косинуса - комбинация - называется фазой колебания .

Выражения (1.19) и (1.23) совершенно эквивалентны, так что мы можем пользоваться любым их них, исходя из соображений простоты. Оба решения являются периодическими функциями времени. Действительно, синус и косинус периодичны с периодом . Поэтому различные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени t* , за который фаза колебания получает приращение, кратное :

Отсюда следует, что

Наименьшее из этих времен

называется периодом колебаний (рис. 1.8), а - его круговой (циклической) частотой .

Рис. 1.8.

Используют также и частоту колебаний

Соответственно, круговая частота равна числу колебаний за секунд.

Итак, если система в момент времени t характеризуется значением переменной x(t), то, то же самое значение, переменная будет иметь через промежуток времени (рис.1.9), то есть

Это же значение, естественно, повторится через время 2T , ЗT и т. д.

Рис. 1.9. Период колебаний

В общее решение входят две произвольные постоянные (C 1 , C 2 или A , a ), значения которых должны определяться двумя начальными условиями . Обычно (хотя и не обязательно) их роль играют начальные значения переменной x(0) и ее производной .

Приведем пример. Пусть решение (1.19) уравнения гармонических колебаний описывает движение пружинного маятника. Значения произвольных постоянных зависят от способа, каким мы вывели маятник из состояния равновесия. Например, мы оттянули пружину на расстояние и отпустили шарик без начальной скорости. В этом случае

Подставляя t = 0 в (1.19), находим значение постоянной С 2

Решение, таким образом, имеет вид:

Скорость груза находим дифференцированием по времени

Подставляя сюда t = 0, находим постоянную С 1 :

Окончательно

Сравнивая с (1.23), находим, что - это амплитуда колебаний, а его начальная фаза равна нулю: .

Выведем теперь маятник из равновесия другим способом. Ударим по грузу, так что он приобретет начальную скорость , но практически не сместится за время удара. Имеем тогда другие начальные условия:

наше решение имеет вид

Скорость груза будет изменяться по закону:

Подставим сюда :

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 13.2) гармо-ническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

\(x = A \cos \Bigr(\frac{2 \pi}{T}t + \varphi_0 \Bigl)\) или \(x = A \sin \Bigr(\frac{2 \pi}{T}t + \varphi"_0 \Bigl)\)

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; \(\varphi_0\) - начальная фаза; \(\varphi = \frac{2 \pi}{T}t + \varphi"_0\) - фаза колебании в момент времени t . Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени t 0 = 0 колеблющаяся точка максимально смещена от положения равновесия, то \(\varphi_0 = 0\), а смещение точки от положения равновесия изменяется по закону

\(x = A \cos \frac{2 \pi}{T}t.\)

Если колеблющаяся точка при t 0 = 0 находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

\(x = A \sin \frac{2 \pi}{T}t.\)

Величину V , обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

\(\nu = \frac{1}{T} \)(в СИ единицей частоты является герц, 1Гц = 1с -1).

Если за время t тело совершает N полных колебаний, то

\(T = \frac{t}{N} ; \nu = \frac{N}{t}.\)

Величину \(\omega = 2 \pi \nu = \frac{2 \pi}{T}\) , показывающую, сколько колебаний совершает тело за 2 \(\pi\) с , называют циклической (круговой) частотой.

Кинематический закон гармонического движения можно записать в виде:

\(x = A \cos(2\pi \nu t + \varphi_0), x = A \cos(\omega t + \varphi_0).\)

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 13.3, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая \(\varphi_0=0\), т.е. \(~x=A\cos \omega t.\)

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

\(\upsilon_x = x" A \sin \omega t = \omega A \cos \Bigr(\omega t + \frac{\pi}{2} \Bigl) ,\)

где \(~\omega A = |\upsilon_x|_m\)- амплитуда проекции скорости на ось х .

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по  гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на \(\frac{\pi}{2}\) (рис. 13.3, б).

Для выяснения зависимости ускорения a x (t) найдем производную по времени от проекции скорости:

\(~ a_x = \upsilon_x" = -\omega^2 A \cos \omega t = \omega^2 \cos(\omega t + \pi),\)

где \(~\omega^2 A = |a_x|_m\) - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 13,3, в).

Аналогично можно построить графики зависимостей \(~x(t), \upsilon_x (t)\) и \(~a_x(t),\) если \(~x = A \sin \omega t\) при \(\varphi_0=0.\)

Учитывая, что \(A \cos \omega t = x\), формулу для ускорения можно записать

\(~a_x = - \omega^2 x,\)

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения а x =х" " , то полученное соотношение можно записать в виде:

\(~a_x + \omega^2 x = 0\) или \(~x"" + \omega^2 x = 0.\)

Последнее равенство называют уравнением гармонических колебаний.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний - уравнением гармонического осциллятора.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 368-370.

ГАРМОНИЧЕСКОЕ КОЛЕБАТЕЛЬНОЕ ДВИЖЕНИЕ

§1 Кинематика гармонического колебания

Процессы, повторяющиеся во времени называются колебаниями.

В зависимости от природы колебательного процесса и механизма возбуждения бывают: механические колебания (колебания маятников, струн, зданий, земной поверхности и т.д.); электромагнитные колебания (колебания переменного тока, колебания векторов и в электромагнитной волне и т.д.); электромеханические колебания (колебания мембраны телефона, диффузора громкоговорителя и др.); колебания ядер и молекул в результате теплового движения в атомах.

Рассмотрим отрезок [ОД] (радиус-вектор), совершающий вращательное движение вокруг точки 0. Длина |ОД| = A . Вращение происходит с постоянной угловой скоростью ω 0 . Тогда угол φ между радиус-вектором и осью x меняется со временем по закону

где φ 0 - угол между [ОД] и осью х в момент времени t = 0. Проекция отрезка [ОД] на ось х в момент времени t = 0

а в произвольный момент времени

(1)

Таким образом, проекция отрезка [ОД] на ось х совершает колебания, происходящие вдоль оси х , и эти колебания описываются законом косинуса (формула (1)).

Колебания, которые описываются законом косинуса

или синуса

называется гармоническими .

Гармонические колебания являются периодическими , т.к. значение величины х (и у) повторяется через равные промежутки времени.

Если отрезок [ОД] находится з низшем положении по рисунку, т.е. точка Д совпадает с точкой Р , то его проекция на ось х равна нулю. Назовем такое положение отрезка [ОД] положением равновесия. Тогда можно сказать, что величина х описывает смещение колеблющейся точки из положения равновесия. Максимальное смещение от положения равновесия называется амплитудой колебания

Величина

которая стоит под знаком косинуса называется фазой. Фаза определяет смещение от положения равновесия в произвольный момент времени t . Фаза в начальный момент времени t = 0 , равная φ 0 называется начальной фазой.

Т

Промежуток времени, за который совершается одно полное колебание, называется периодом колебаний Т . Число колебаний в единицу времени называется частотой колебаний ν.

Через промежуток времени, равный периоду Т , т.е. при увеличении аргумента косинуса на ω 0 Т , движение повторяется, и косинус принимает прежнее значение

т.к. период косинуса равен 2π , то, следовательно, ω 0 Т = 2π

таким образом, ω 0 - это число колебаний тела за 2π секунд. ω 0 - циклическая или круговая частота .

рисунок гармонического колебания

А - амплитуда, Т - период, х - смещение, t - время.

Скорость колеблющейся точки найдем, продифференцировав уравне-ние смещения х (t ) по времени

т.е. скорость v отличается по фазе от смещения х на π /2.

Ускорение - первая производная от скорости (вторая производная от смещения) по времени

т.е. ускорение а отличается от смещения по фазе на π.


Построим график х( t ) , у( t ) и а( t ) в одной смете координат (для простоты примем φ 0 = 0 и ω 0 = 1)

Свободными или собственными называются колебания, которые происходят в системе предоставленной самой себе после того, как она была выведена из положения равновесия.