Как найти объем многогранника правильной шестиугольной призмы. Как найти объем правильной шестиугольной призмы (формула)

На сайте уже были рассмотрены некоторые типы задач по стереометрии, которые входят в единый банк заданий экзамена по математике. Например, задания про .

Призма называется правильной если её боковые перпендикулярны основаниям и в основаниях лежит правильный многоугольник. То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

В этой статье для вас задачи на решение призмы, в основании которой лежит правильный шестиугольник . Особенностей и сложностей в решении нет никаких. В чём суть? Дана правильная шестиугольная призма, требуется вычислить расстояние между двумя вершинами или найти заданный угол. Задачи на самом деле простые, в итоге решение сводится к нахождению элемента в прямоугольном треугольнике.

Используется теорема Пифагора и . Необходимо знание определений тригонометрических функций в прямоугольном треугольнике.

Обязательно посмотрите информацию о правильном шестиугольнике в . Ещё вам пригодится навык извлечения их большого числа. Можете на решение многогранников, там тоже вычисляли расстояние между вершинами и углы.

Кратко: что представляет собой правильный шестиугольник?

Известно, что в правильном шестиугольнике стороны равны. Кроме этого, углы между сторонами тоже равны .

*Противолежащие стороны параллельны.

Дополнительная информация

Радиус окружности описанной около правильного шестиугольника равен его стороне. *Это подтверждается очень просто: если мы соединим противоположные вершины шестиугольника, то получим шесть равных равносторонних треугольников. Почему равносторонних?

У каждого треугольника угол при его вершине лежащей в центре равен 60 0 (360:6=60). Так как у треугольника две стороны имеющие общую вершину в центре равны (это радиусы описанной окружности), то каждый угол при основании такого равнобедренного треугольника так же равен 60 градусам.

То есть правильный шестиугольник, образно говоря, состоит как бы из шести равных равносторонних треугольников.

Какой полезный для решения задач факт ещё следует отметить? Угол при вершине шестиугольника (угол между его соседними сторонами) равен 120 градусам.

*Умышленно не коснулись формул правильного N-угольника. Данные формулы мы подробно рассмотрим в будущем, здесь они просто не нужны.

Рассмотрим задачи:

272533. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 48. Найдите расстояние между точками A и E 1 .

Рассмотрим прямоугольный треугольник AA 1 E 1 . По теореме Пифагора:

*Угол между сторонами правильного шестиугольника равен 120 градусам.

Отрезок АЕ 1 является гипотенузой, АА 1 и А 1 Е 1 катеты. Ребро АА 1 нам известно. Катет А 1 Е 1 мы можем найти используя используя .

Теорема: Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними.

Следовательно

По теореме Пифагора:

Ответ: 96

*Обратите внимание, что 48 возводить в квадрат совсем не обязательно.

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 35. Найдите расстояние между точками B и E.

Сказано, что все рёбра равны 35, то есть сторона шестиугольника лежащего в основании равна 35. А так же, как уже сказано, радиус описанной около него окружности равен этому же числу.

Таким образом,

Ответ: 70

273353. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны сорока корням из пяти. Найдите расстояние между точками B и E 1 .

Рассмотрим прямоугольный треугольник BB 1 E 1 . По теореме Пифагора:

Отрезок B 1 E 1 равен двум радиусам описанной около правильного шестиугольника окружности, а её радиус равен стороне шестиугольника, то есть

Таким образом,


Ответ: 200

273683. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 45. Найдите тангенс угла AD 1 D.

Рассмотрим прямоугольный треугольник ADD 1 , в котором AD равно диаметру окружности, описанной вокруг основания. Известно, что радиус окружности, описанной вокруг правильного шестиугольника равен его стороне.

Таким образом,

Ответ: 2

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 23. Найдите угол DAB . Ответ дайте в градусах.

Рассмотрим правильный шестиугольник:

В нём углы между сторонами равны 120°. Значит,

Сама длина ребра не имеет значения, на величину угла она не влияет.

Ответ: 60

В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 10. Найдите угол AC 1 C. Ответ дайте в градусах.

Рассмотрим прямоугольный треугольник AC 1 C:

Найдём AC . В правильном шестиугольнике углы между его сторонами равны 120 градусам, тогда по теореме косинусов для треугольника АВС :


Таким образом,

Значит, угол AC 1 C равен 60 градусам.

Ответ: 60

274453. В правильной шестиугольной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 все ребра равны 10. Найдите угол AC 1 C. Ответ дайте в градусах.

Призма - это одна из объемных фигур, свойства которой изучают в школе в курсе пространственной геометрии. В данной статье рассмотрим конкретную призму - шестиугольную. Что это за фигура, как найти объем правильной шестиугольной призмы и площадь ее поверхности? Ответы на эти вопросы содержатся в статье.

Фигура призма

Предположим, что мы имеем произвольный многоугольник с числом сторон n, который находится в некоторой плоскости. К каждой вершине этого многоугольника построим вектор, который не будет лежать в плоскости многоугольника. С помощью этой операции мы получим n одинаковых векторов, вершины которых образуют многоугольник, в точности равный исходному. Фигура, ограниченная двумя одинаковыми многоугольниками и параллельными линиями, соединяющими их вершины, называется призмой.

Гранями призмы являются два основания, представленные многоугольниками с n сторонами, и боковые n поверхностей-параллелограммов. Количество ребер Р фигуры связано с числом ее вершин В и граней Г формулой Эйлера:

Для многоугольника с n сторонами получаем n + 2 грани и 2 * n вершин. Тогда количество ребер будет равно:

Р = В + Г - 2 = 2 * n + n + 2 - 2 = 3 * n

Самой простой призмой является треугольная, то есть основанием у нее является треугольник.

Классификация призм достаточно разнообразна. Так, они могут быть правильными и неправильными, прямоугольными и косоугольными, выпуклыми и вогнутыми.

Шестиугольная призма

Эта статья посвящена вопросу объема правильной шестиугольной призмы. Сначала познакомимся ближе с этой фигурой.

Как следует из названия, основание шестиугольной призмы является многоугольником с шестью сторонами и шестью углами. В общем случае таких многоугольников можно составить великое множество, однако для практики и для решения геометрических задач важен один единственный случай - правильный шестиугольник. У него все стороны равны между собой, а каждый из 6 углов составляет 120 o . Построить этот многоугольник можно легко, если разделить окружность на 6 равных частей тремя диаметрами (они должны пересекаться под углами 60 o).

Правильная шестиугольная призма предполагает не только наличие правильного многоугольника в ее основании, но и тот факт, что все боковые стороны фигуры должны являться прямоугольниками. Это возможно только в случае, если боковые грани будут перпендикулярны шестиугольным основаниям.

Правильная шестиугольная призма - это достаточно совершенная фигура, которая встречается в быту и природе. Стоит только вспомнить о форме пчелиных сот или о шестигранном гаечном ключе. В области нанотехнологий также часто встречаются шестиугольные призмы. Например, кристаллические решетки ГПУ и C32, которые реализуются при определенных условиях в титане и цирконии, а также решетка графита имеют форму шестиугольных призм.

Площадь поверхности шестиугольной призмы

Перейдем теперь непосредственно к вопросу вычисления площади и объема призмы. Сначала рассчитаем площадь поверхности этой фигуры.

Площадь поверхности любой призмы вычисляется с помощью следующего равенства:

То есть искомая площадь S равна сумме площадей двух оснований S o и площади боковой поверхности S b . Для определения величины S o можно поступить двумя способами:

  • Вычислить ее самостоятельно. Для этого шестиугольник разбивается на 6 равносторонних треугольников. Зная, что площадь одного треугольника равна половине произведения высоты на основание (длину стороны шестиугольника), можно найти площадь рассматриваемого многоугольника.
  • Воспользоваться известной формулой. Она приведена ниже:

S n = n / 4 * a 2 * ctg(pi / n)

Здесь a - длина стороны правильного многоугольника, имеющего n вершин.

Очевидно, что оба способа приводят к одному результату. Для правильного шестиугольника площадь равна:

S o = S 6 = 3 * √3 * a 2 / 2

Площадь боковой поверхности найти просто, для этого следует умножить основание каждого прямоугольника a на высоту призмы h, полученное значение умножить на число таких прямоугольников, то есть на 6. В итоге:

Пользуясь формулой для полной площади поверхности, для правильной шестиугольной призмы получаем:

S = 3 * √3 * a 2 + 6 * a * h = 3 * a * (√3 * a + 2 * h)

Как найти объем призмы?

Объем - это физическая величина, которая отражает область пространства, занимаемую объектом. Для призмы рассчитать эту величину можно по следующей формуле:

Это выражение дает ответ на вопрос о том, как найти объем призмы произвольной формы, то есть необходимо площадь основания S o умножить на высоту фигуры h (расстояние между основаниями).

Заметим, что приведенное выражение справедливо для любой призмы, включая вогнутые и косоугольные фигуры, образованные неправильными многоугольниками в основании.

Формула объема призмы шестиугольной правильной

На данный момент мы рассмотрели все необходимые теоретические выкладки, чтобы получить выражение для объема рассматриваемой призмы. Для этого достаточно площадь основания умножить на длину бокового ребра, которая является высотой фигуры. В итоге шестиугольной призмы примет вид:

V = 3 * √3 * a 2 * h / 2

Таким образом, расчет объема рассматриваемой призмы предполагает знание всего двух величин: длины стороны ее основания и высоты. Эти две величины однозначно определяют объем фигуры.

Сравнение объемов и цилиндра

Выше было сказано, что основание шестиугольной призмы может быть легко построено с использованием окружности. Также известно, что если увеличивать число сторон правильного многоугольника, то его форма будет приближаться к окружности. В связи с этим представляет интерес рассчитать, на сколько объем правильной шестиугольной призмы отличается от этого значения для цилиндра.

Для ответа на поставленный вопрос необходимо вычислить длину стороны шестиугольника, вписанного в окружность. Можно легко показать, что она равна радиусу. Обозначим радиус окружности буквой R. Предположим, что высота цилиндра и призмы равна некоторому значению h. Тогда объем призмы равен следующему значению:

V p = 3 * √3 * R 2 * h / 2

Объем цилиндра определяется по той же формуле, что и объем для произвольной призмы. Учитывая, что площадь круга равна pi * R 2 , для объема цилиндра имеем:

Найдем отношение объемов этих фигур:

V p / V с = 3 * √3 * R 2 * h / 2 / (pi * R 2 * h) = 3 * √3 / (2 * pi)

Число "пи" равно 3,1416. Подставляя его, получаем:

Таким образом, объем правильной шестиугольной призмы составляет около 83 % от объема цилиндра, в который она вписана.

Правильная шестиугольная призма - призма, в основаниях которой лежат два правильных шестиугольника, а все боковые грани строго перпендикулярны этим основаниям.

  • A B C D E F A 1 B 1 C 1 D 1 E 1 F 1 - правильная шестиугольная призма
  • a - длина стороны основания призмы
  • h - длина бокового ребра призмы
  • S осн . - площадь основания призмы
  • S бок . - площадь боковой грани призмы
  • S полн . - площадь полной поверхности призмы
  • V призмы - объем призмы

Площадь оснований призмы

В основаниях призмы находятся правильные шестиугольники со стороной a . По свойствам правильного шестиугольника, площадь оснований призмы равна

Таким образ

S осн . = 3 3 2 a 2


Таким образом, получается, что S A B C D E F = S A 1 B 1 C 1 D 1 E 1 F 1 = 3 3 2 a 2

Площадь полной поверхности призмы

Площадь полной поверхности призмы складывается из площадей боковых граней призмы и площадей ее оснований. Каждая из боковых граней призмы является прямоугольником со сторонами a и h . Следовательно, по свойствам прямоугольника

S бок . = a ⋅ h

У призмы шесть боковых граней и два основания, следовательно, площадь ее полной поверхности равна

S полн . = 6 ⋅ S бок . + 2 ⋅ S осн . = 6 ⋅ a ⋅ h + 2 ⋅ 3 3 2 a 2

Объем призмы

Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер, например, ребро A A 1 . В основании правильной шестиугольной призмы находится правильный шестиугольник, площадь которого нам известна. Получаем

V призмы = S осн . ⋅ A A 1 = 3 3 2 a 2 ⋅ h

Правильный шестиугольник в основаниях призмы

Рассматриваем правильный шестиугольник ABCDEF, лежащий в основании призмы.

Проводим отрезки AD, BE и CF. Пусть пересечением этих отрезков является точка O.

По свойствам правильного шестиугольника, треугольники AOB, BOC, COD, DOE, EOF, FOA являются правильными треугольниками. Отсюда следует, что

A O = O D = E O = O B = C O = O F = a

Проводим отрезок AE, пересекающийся с отрезком CF в точке M. Треугольник AEO равнобедренный, в нём A O = O E = a , ∠ E O A = 120 . По свойствам равнобедренного треугольника.

A E = a ⋅ 2 (1 − cos E O A ) − − − − − − − − − − − − = 3 ⋅ a

Аналогичным образом приходим к заключению, что A C = C E = 3 ⋅ a , F M = M O = 1 2 ⋅ a .

Находим E A 1

В треугольнике A E A 1 :

  • A A 1 = h
  • A E = 3 ⋅ a - как мы только что выяснили
  • ∠ E A A 1 = 90

A E A 1

E A 1 = A A 2 1 + A E 2 − − − − − − − − − − = h 2 + 3 ⋅ a 2 − − − − − − − −

Если h = a , то тогда E A 1 = 2 ⋅ a

F B 1 = A C 1 = B D 1 = C E 1 = D F 1 = h 2 + 3 ⋅ a 2 − − − − − − − − .

Находим E B 1

В треугольнике B E B 1 :

  • B B 1 = h
  • B E = 2 ⋅ a - потому что E O = O B = a
  • ∠ E B B 1 = 90 - по свойствам правильной прязмы

Таким образом, получается, что треугольник B E B 1 прямоугольный. По свойствам прямоугольного треугольника

E B 1 = B B 2 1 + B E 2 − − − − − − − − − − = h 2 + 4 ⋅ a 2 − − − − − − − −

Если h = a , то тогда

E B 1 = 5 ⋅ a

После аналогичных рассуждений получаем, что F C 1 = A D 1 = B E 1 = C F 1 = D A 1 = h 2 + 4 ⋅ a 2 − − − − − − − − .

Находим O F 1

В треугольнике F O F 1 :

  • F F 1 = h
  • F O = a
  • ∠ O F F 1 = 90 - по свойствам правильной призмы

Таким образом, получается, что треугольник F O F 1 прямоугольный. По свойствам прямоугольного треугольника

O F 1 = F F 2 1 + O F 2 − − − − − − − − − − = h 2 + a 2 − − − − − −

Если h = a , то тогда