Производная максимумы и минимумы. Нахождение точек максимума (мин) функции. Логарифмы

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Найти наибольшее и наименьшее значение функции

y =

на отрезке [ ;]

Включать теорию

Правила ввода функций :

Необходимое условие экстремума функции одной переменной

Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает.

Достаточное условие экстремума функции одной переменной

Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Алгоритм нахождения данных точек оговаривался уже неоднократно, кратко повторюсь:

1. Находим производную функции.

2. Находим нули производной (приравниваем производную к нулю и решаем уравнение).

3. Далее строим числовую ось, на ней отмечаем найденные точки и определяем знаки производной на полученных интервалах. *Это делается путём подстановки произвольных значений из интервалов в производную.

Если вы совсем не знакомы со свойствами производной для исследования функций, то обязательно изучите статью « ». Также повторите таблицу производных и правила дифференцирования (имеются в этой же статье). Рассмотрим задачи:

77431. Найдите точку максимума функции у = х 3 –5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

у(0) " = 3∙0 2 – 10∙0 + 7 = 7 > 0

у(2) " = 3∙2 2 – 10∙2 + 7 = – 1< 0

у(3) " = 3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 1

77432. Найдите точку минимума функции у = х 3 +5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 + 10х + 7 = 0

Решая квадратное уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) " = 3∙(–3) 2 + 10∙(–3) + 7 = 4 > 0

у( –2 ) "= 3∙(–2) 2 + 10∙(–2) + 7 = –1 < 0

у(0 ) "= 3∙0 2 – 10∙0 + 7 = 7 > 0


В точке х = –1 производная меняет свой знак с отрицательного на положительный, значит это есть искомая точка минимума.

Ответ: –1

77435. Найдите точку максимума функции у = 7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

х 2 = 4

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) "= 12 – 3∙(–3) 2 = –15 < 0

у(0 ) "= 12 – 3∙0 2 = 12 > 0

у( 3 ) "= 12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 2

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у = 9х 2 – х 3 .

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –1 ) "= 18 (–1) –3 (–1) 2 = –21< 0

у(1 ) "= 18∙1 –3∙1 2 = 15 > 0

у(7 ) "= 18∙7 –3∙7 2 = –1< 0

В точке х = 6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 6

*Для этой же функции точкой минимума является точка х = 0.

77443. Найдите точку максимума функции у = (х 3 /3)–9х–7.

Найдём производную функции:

Найдем нули производной:

х 2 – 9 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= (–4) 2 – 9 > 0

у(0 ) "= 0 2 – 9 < 0

у(4 ) "= 4 2 – 9 > 0

В точке х = – 3 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: – 3

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму :

1 . Находим ОДЗ функции.

2 . Находим производную функции

3 . Приравниваем производную к нулю

4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции 0" title="f^{prime}(x)>0">, то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5 . Находим точки максимума и минимума функции .

В точке максимума функции производная меняет знак с "+" на "-" .

В точке минимума функции производная меняет знак с "-" на "+" .

6 . Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

Рассмотрим несколько примеров решения задач из Открытого банка заданий для

1 . Задание B15 (№ 26695)

На отрезке .

1. Функция определена при всех действительных значениях х

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

Ответ: 5.

2 . Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке .

1. ОДЗ функции title="x{pi}/2+{pi}k, k{in}{bbZ}">

Производная равна нулю при , однако, в этих точках она не меняет знак:

Следовательно, title="3/{cos^2{x}}>=3">, значит, title="3/{cos^2{x}}-3>=0">, то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

Title="y^{prime}=3/{cos^2{x}}-3={3-3cos^2{x}}/{cos^2{x}}={3sin^2{x}}/{cos^2{x}}=3tg^2{x}>=0">

Ответ: 5.

3 . Задание B15 (№ 26708)

Найдите наименьшее значение функции на отрезке .

1. ОДЗ функции : title="x{pi}/2+{pi}k, k{in}{bbZ}">

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума (в ней производная меняет знак с "-" на "+"), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Точки максимума и минимума являются точками экстремума функции, которые находятся по определенному алгорифму. Это является главным показателем при изыскании функции. Точка x0 является точкой минимума, если для всех x из определенной окрестности x0 выполняется неравенство f(x) ? f(x0) (для точки максимума объективно обратное неравенство f(x) ? f(x0)).

Инструкция

1. Обнаружьте производную функции. Производная характеризует метаморфоза функции в определенной точке и определяется как предел отношения приращения функции к приращению довода, тот, что тяготится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Скажем, производная функции y = x3 будет равна y’ = x2.

2. Приравняйте данную производную к нулю (в данном случае x2=0).

3. Обнаружьте значение переменной данного выражения. Это будут те значения, при которых данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры взамен x, при которых все выражение станет нулевым. Скажем:2-2×2= 0(1-x)(1+x) = 0x1= 1, x2 = -1

4. Полученные значения нанесите на координатную прямую и высчитайте знак производной для всего из полученных интервалов. На координатной прямой отмечаются точки, которые принимаются за предисловие отсчета. Дабы высчитать значение на интервалах подставьте произвольные значения, подходящие по критериям. Скажем, для предыдущей функции до интервала -1 дозволено предпочесть значение -2. На интервале от -1 до 1 дозволено предпочесть 0, а для значений огромнее 1 выберите 2. Подставьте данные цифры в производную и узнаете знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. негативно и на данном интервале будет стоять знак минус. Если x=0, то значение будет равно 2, а значит на данном интервале ставится позитивный знак. Если x=1, то производная также будет равна -0,24 и потому ставится минус.

5. Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Точки максимума функции наравне с точками минимума именуются точками экстремума. В этих точках функция меняет нрав поведения. Экстремумы определяются на ограниченных числовых промежутках и неизменно являются локальными.

Инструкция

1. Процесс нахождения локальных экстремумов именуется изысканием функции и выполняется путем обзора первой и 2-й производной функции. Перед началом изыскания удостоверитесь, что данный промежуток значений довода принадлежит к возможным значениям. Скажем, для функции F=1/x значение довода х=0 неприемлемо. Либо для функции Y=tg(x) довод не может иметь значение х=90°.

2. Удостоверитесь, что функция Y дифференцируема на каждому заданном отрезке. Обнаружьте первую производную Y’. Видимо, что до достижения точки локального максимума функция повышается, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость метаморфозы функции. Пока функция нарастает, скорость этого процесса является величиной позитивной. При переходе через локальный максимум функция начинает убывать, и скорость процесса метаморфозы функции становится негативной. Переход скорости метаморфозы функции через нуль происходит в точке локального максимума.

3. Следственно, на участке возрастания функции ее первая производная позитивна для всех значений довода на этом промежутке. И напротив - на участке убывания функции значение первой производной поменьше нуля. В точке локального максимума значение первой производной равно нулю. Видимо, дабы обнаружить локальный максимум функции, нужно обнаружить точку х?, в которой первая производная этой функции равна нулю. При любом значении довода на исследуемом отрезке хх? – негативной.

4. Для нахождения х? решите уравнение Y’=0. Значение Y(х?) будет локальным максимумом, если вторая производная функции в этой точке поменьше нуля. Обнаружьте вторую производную Y”, подставьте в полученное выражение значение довода х= х? и сравните итог вычислений с нулем.

5. Скажем, функция Y=-x?+x+1 на отрезке от -1 до 1 имеет постоянную производную Y’=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y”=-2. Постройте по точкам график функции Y=-x?+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Видео по теме

Полезный совет
Для нахождения производной существуют онлайн-сервисы, которые подсчитывают надобные значения и выводят итог. На таких сайтах дозволено обнаружить производную до 5 порядка.