Формула вычисления количества теплоты при нагревании. Количество теплоты. Единицы количества теплоты. Удельная теплоемкость. Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

Определение

Теплотой называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как . Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

где – удельная теплоемкость тела, m – масса тела, - молярная теплоемкость, – молярная масса вещества, – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты (), которое получает тело при увеличении его температуры на величину можно вычислить как:

где t 2 , t 1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности () в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты () равное:

где – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Единицы измерения количества теплоты

Основной единицей измерения количества теплоты в системе СИ является: [Q]=Дж

Внесистемная единица теплоты, которая часто встречается в технических расчетах. [Q]=кал (калория). 1 кал=4,1868 Дж.

Примеры решения задач

Пример

Задание. Какие объемы воды следует смешать, чтобы получить 200 л воды при температуре t=40С, если температура одной массы воды t 1 =10С, второй массы воды t 2 =60С?

Решение. Запишем уравнение теплового баланса в виде:

где Q=cmt – количество теплоты приготовленной после смешивания воды; Q 1 =cm 1 t 1 - количество теплоты части воды температурой t 1 и массой m 1 ; Q 2 =cm 2 t 2 - количество теплоты части воды температурой t 2 и массой m 2 .

Из уравнения (1.1) следует:

При объединении холодной (V 1) и горячей (V 2) частей воды в единый объем (V) можно принять то, что:

Так, мы получаем систему уравнений:

Решив ее получим:

План- конспект

открытого урока физики в 8 «Е» классе

МОУ гимназии №77 г. о. Тольятти

учителя физики

Ивановой Марии Константиновны

Тема урока:

Решение задач на расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Дата проведения:

Цель урока:

    отработать практические навыки расчета количества теплоты, необходимого для нагревания и выделяемого при охлаждении;

    развивать навыки счёта, совершенствовать логические умения при анализе сюжета задач, решении качественных и расчётных задач;

    воспитывать умение работать в парах, уважать мнение оппонента и отстаивать свою точку зрения, соблюдать аккуратность при оформлении задач по физике.

Оборудование урока:

    компьютер, проектор, презентация по теме (Приложение №1), материалы единой коллекции цифровых образовательных ресурсов.

Тип урока:

    решение задач.

«Суньте палец в пламя от спички, и вы испытаете ощущение, равного которому нет ни на небе, ни на земле; однако все, что произошло, есть просто следствие соударений молекул».

Дж. Уилер

Ход урока:

    Организационный момент

    Приветствие учащихся.

    Проверка отсутствующих учащихся.

    Сообщение темы и целей урока.

    Проверка домашнего задания.

1.Фронтальный опрос

    Что является единицей удельной теплоемкости вещества?

    Почему водоемы замерзают медленно? Почему с рек и особенно озер долго не сходит лед, хотя давно стоит теплая погода?

    Почему на Черноморском побережье Кавказа даже зимой достаточно тепло?

    Почему многие металлы остывают значительно быстрее воды? (Слайд №2)

2. Индивидуальный опрос (карточки с разноуровневыми заданиями для нескольких учащихся)

    Изучение новой темы.

1. Повторение понятия количества теплоты.

Количество теплоты - количественная мера изменения внутренней энергии при теплообмене.

Количество теплоты, поглощаемое телом, принято считать положительным, а выделяемое – отрицательным. Выражение «тело обладает некоторым количеством теплоты» или «в теле содержится (запасено) какое- то количество теплоты» не имеет смысла. Количество теплоты можно получить или отдать в каком- либо процессе, но обладать им нельзя.

При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии горячего тела передается холодному телу.

2. Формула количества теплоты .

Выведем рабочую формулу, чтобы решать задачи по расчету количества теплоты: Q = cm ( t 2 - t 1 ) - запись на доске и в тетрадях .

Выясняем, что количество теплоты, отданное или полученное телом зависит от начальной температуры тела, его массы и от его удельной теплоемкости.

На практике часто пользуются тепловыми расчетами. Например, при строительстве зданий необходимо учитывать, какое количество теплоты должна отдавать зданию вся система отопления. Следует также знать, какое количество теплоты будет уходить в окружающее пространство через окна, стены, двери.

3 . Зависимость количества теплоты от различных величин . (Слайды №3, №4, №5,№6)

4 . Удельная теплоёмкость (Слайд №7)

5. Единицы измерения количества теплоты (Слайд №8)

6. Пример решения задачи на расчёт количества теплоты (Слайд №10)

7. Решение задач на расчёт количества теплоты на доске и в тетрадях

Выясняем также, что если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел. Для этого используем пример решенной задачи из § 9 учебника.

Динамическая пауза.

IV. Закрепление изученного материала.

1. Вопросы для самоконтроля (Слайд №9)

2. Решение качественных задач :

    Почему в пустынях днем жарко, а ночью температура падает ниже 0°С? (Песок обладает малой удельной теплоемкостью, поэтому быстро нагревается и охлаждается.)

    По куску свинца и куску стали, той же массы ударили молотком одинаковое число раз. Какой кусок нагрелся больше? Почему? (Кусок свинца нагрелся больше, т. к. удельная теплоемкость свинца меньше.)

    Почему железные печи скорее нагревают комнату, чем кирпичные, но не так долго остаются теплыми? (Удельная теплоемкость меди меньше, чем у кирпича.)

    Медной и стальной гирькам одинаковой массы передали равные количества теплоты. У какой гирьки температура изменится сильнее? (У медной, т.к. удельная теплоемкость меди меньше.)

    На что расходуется больше энергии: на нагревание воды или на нагревание алюминиевой кастрюли, если их массы одинаковы? (На нагревание воды, т. к. удельная теплоемкость воды большая.)

    Как известно, железо имеет большую удельную теплоемкость, чем медь. Следовательно, жало пальника, изготовленное из железа, обладало бы большим запасом внутренней энергии, чем такое же жало из меди, при равенстве их масс и температур. Почему, несмотря на это, жало паяльника делают из меди? (Медь обладает большой теплопроводностью.)

    Известно, что теплопроводность металла значительно больше теплопроводности стекла. Почему же тогда калориметры делают из металла, а не из стекла? (Металл обладает большой теплопроводностью и малой удельной теплоемкостью, благодаря этому температура внутри калориметра быстро выравнивается, а на нагревание его затрачивается мало тепла. Кроме того, излучение металла значительно меньше излучения стекла, что уменьшает потери тепла.)

    Известно, что рыхлый снег хорошо предохраняет почву от промерзания, потому что в нем заключено много воздуха, который является плохим проводником тепла. Но ведь и к почве, не покрытой снегом, прилегают слои воздуха. Отчего же в таком случае она сильно не промерзает? (Воздух, соприкасаясь с непокрытой снегом почвой, все время находится в движении, перемешивается. Этот движущийся воздух отнимает от земли тепло и усиливает испарение из нее влаги. Воздух же, находящийся между частицами снега, малоподвижен и, как плохой проводник тепла, предохраняет землю от промерзания.)

3. Решение расчетных задач

Первые две задачи решаются высокомотивированными учащимися у доски с коллективным обсуждением. Находим правильные подходы в рассуждениях и оформлении решения задач.

Задача №1 .

При нагревании куска меди от 20°С до 170°С Было затрачено 140000 Дж тепла. Определить массу меди.

Задача №2

Чему равна удельная теплоемкость жидкости, если для нагревания 2 л её на 20°С потребовалось 150000 Дж. Плотность жидкости 1,5 г/см³

Ответы на следующие задачи учащиеся находят в парах:

Задача №3.

Два медных шара массами m o и 4m o нагревают так, что оба шара получают одинаковое количество теплоты. При этом большой шар нагрелся на 5°C Насколько нагрелся шар меньшей массы?

Задача №4.

Какое количество теплоты выделяется при охлаждении 4 м³ льда от 10°C до– 40°C ?

Задача №5.

В каком случае потребуется для нагревания двух веществ большее количество теплоты, если нагрев двух веществ одинаков ∆t 1 = ∆t 2 Первое вещество- кирпич массы 2 кг и с =880Дж/кг ∙ °C , и латунь - масса 2 кг и с = 400 Дж/кг ∙ °C

Задача №6.

Стальной брусок массы 4 кг нагрели. При этом было затрачено 200000 Дж тепла. Определите конечную температуру тела, если начальная температура равна t 0 = 10°C

При самостоятельном решении задач у учеников, это естественно, возникают вопросы. Наиболее часто задаваемые вопросы разбираем коллективно. На те вопросы, которые носят частный характер, даются индивидуальные ответы.

    Рефлексия. Выставление отметок.

Учитель: Итак, ребята, чему вы сегодня научились на уроке и что узнали нового?

Примерные ответы учащихся :

    Отработали навыки решения качественных и расчётных задач по теме «Расчет количества теплоты, необходимого для нагревания тела и выделяемого при охлаждении».

    Убедились на практике в том, как перекликаются и связаны такие предметы как физика и математика.

    Задание на дом:

    Решить задачи№ 1024, 1025, из сборника задач В.И. Лукашика, Е. В. Ивановой.

    Самостоятельно придумать задачу на расчёт количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

ТЕПЛООБМЕН.

1.Теплообмен.

Теплообмен или теплопередача – это процесс передачи внутренней энергии одного тела другому без совершения работы.

Существуют три вида теплообмена.

1) Теплопроводность – это теплообмен между телами при их непосредственном контакте.

2) Конвекция – это теплообмен, при котором перенос тепла осуществляется потоками газа или жидкости.

3) Излучение – это теплообмен посредством электромагнитного излучения.

2.Количество теплоты.

Количество теплоты – это мера изменения внутренней энергии тела при теплообмене. Обозначается буквой Q .

Единица измерения количества теплоты = 1 Дж.

Количество теплоты, полученное телом от другого тела в результате теплообмена, может тратиться на увеличение температуры (увеличение кинетической энергии молекул) или на изменение агрегатного состояния (увеличение потенциальной энергии).

3.Удельная теплоёмкость вещества.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры Т 1 до температуры Т 2 пропорционально массе тела m и разности температур (Т 2 – Т 1), т.е.

Q = cm 2 – Т 1 ) = с m Δ Т,

с называется удельной теплоёмкостью вещества нагреваемого тела.

Удельная теплоёмкость вещества равна количеству теплоту, которое необходимо сообщить 1 кг вещества, чтобы нагреть его на 1 К.

Единица измерения удельной теплоёмкости =.

Значения теплоёмкости различных веществ можно найти в физических таблицах.

Точно такое же количество теплоты Q будет выделяться при охлаждении тела на ΔТ.

4.Удельная теплота парообразования.

Опыт показывает, что количество теплоты, необходимое для превращения жидкости в пар, пропорционально массе жидкости, т.е.

Q = Lm ,

где коэффициент пропорциональности L называется удельной теплотой парообразования.

Удельная теплота парообразования равна количеству теплоты, которое необходимо для превращения в пар 1 кг жидкости, находящейся при температуре кипения.

Единица измерения удельной теплоты парообразования .

При обратном процессе, конденсации пара, теплота выделяется в том же количестве, которое затрачено на парообразование.

5.Удельная теплота плавления.

Опыт показывает, что количество теплоты, необходимое для превращения твёрдого тела в жидкость, пропорционально массе тела, т.е.

Q = λ m ,

где коэффициент пропорциональности λ называется удельной теплотой плавления.

Удельная теплота плавления равна количеству теплоты, которое необходимо для превращения в жидкость твёрдого тела массой 1 кг при температуре плавления.

Единица измерения удельной теплоты плавления .

При обратном процессе, кристаллизации жидкости, теплота выделяется в том же количестве, которое затрачено на плавление.

6.Удельная теплота сгорания.

Опыт показывает, что количество теплоты, выделяемое при полном сгорании топлива, пропорционально массе топлива, т.е.

Q = q m ,

Где коэффициент пропорциональности q называется удельной теплотой сгорания.

Удельная теплота сгорания равна количеству теплоты, которое выделяется при полном сгорании 1 кг топлива.

Единица измерения удельной теплоты сгорания.

7.Уравнение теплового баланса.

В теплообмене участвуют два или более тела. Одни тела отдают теплоту, а другие принимают. Теплообмен происходит до тех пор, пока температуры тел не станут равными. По закону сохранения энергии, количество теплоты, которое отдаётся, равно количеству, которое принимается. На этом основании записывается уравнение теплового баланса.

Рассмотрим пример.

Тело массой m 1 , теплоёмкость которого с 1 , имеет температуру Т 1 , а тело массой m 2 , теплоёмкость которого с 2 , имеет температуру Т 2 . Причём Т 1 больше Т 2 . Эти тела приведены в соприкосновение. Опыт показывает, что холодное тело (m 2) начинает нагреваться, а горячее тело (m 1) – охлаждаться. Это говорит о том, что часть внутренней энергии горячего тела передаётся холодному, и температуры выравниваются. Обозначим конечную общую температуру θ.

Количество теплоты, переданной горячим телом холодному

Q передан. = c 1 m 1 1 θ )

Количество теплоты, полученной холодным телом от горячего

Q получен. = c 2 m 2 (θ Т 2 )

По закону сохранения энергии Q передан. = Q получен. , т.е.

c 1 m 1 1 θ )= c 2 m 2 (θ Т 2 )

Раскроем скобки и выразим значение общей установившейся температуры θ.

Значение температуры θ в данном случае получим в кельвинах.

Однако, так как в выражениях для Q передан. и Q получен. стоит разность двух температур, а она и в кельвинах, и в градусах Цельсия одинакова, то расчёт можно вести и в градусах Цельсия. Тогда

В этом случае значение температуры θ получим в градусах Цельсия.

Выравнивание температур в результате теплопроводности можно объяснить на основании молекулярно-кинетической теории как обмен кинетической энергией между молекулами при сталкивании в процессе теплового хаотического движения.

Этот пример можно проиллюстрировать графиком.

>>Физика: Расчет количества теплоты необходимого для нагревания тела и выделяемого им при охлаждении

Чтобы научиться рассчитывать количество теплоты, которое необходимо для нагревания тела, установим сначала, от каких величин оно зависит.
Из предыдущего параграфа мы уже знаем, что это количество теплоты зависит от рода вещества, из которого состоит тело (т.е. его удельной теплоемкости):
Q зависит от с
Но это еще не все.

Если мы хотим подогреть воду в чайнике так, чтобы она стала лишь теплой, то мы недолго будем нагревать ее. А для того чтобы вода стала горячей, мы будем нагревать ее дольше. Но чем дольше чайник будет соприкасаться с нагревателем, тем большее количество теплоты он от него получит.

Следовательно, чем сильнее при нагревании изменяется температура тела, тем большее количество теплоты необходимо ему передать.

Пусть начальная температура тела равна tнач, а конечная температура - tкон. Тогда изменение температуры тела будет выражаться разностью:

Наконец, всем известно, что для нагревания , например, 2 кг воды требуется большее время (и, следовательно, большее количество теплоты), чем для нагревания 1 кг воды. Это означает, что количество теплоты, необходимое для нагревания тела, зависит от массы этого тела:

Итак, для расчета количества теплоты нужно знать удельную теплоемкость вещества, из которого изготовлено тело, массу этого тела и разность между его конечной и начальной температурами.

Пусть, например, требуется определить, какое количество теплоты необходимо для нагревания железной детали массой 5 кг при условии, что ее начальная температура равна 20 °С, а конечная должна стать равной 620 °С.

Из таблицы 8 находим, что удельная теплоемкость железа с = 460 Дж/(кг°С). Это означает, что для нагревания 1 кг железа на 1 °С требуется 460 Дж.
Для нагревания 5 кг железа на 1 °С потребуется в 5 раз больше количества теплоты, т.е. 460 Дж * 5 = 2300 Дж.

Для нагревания железа не на 1 °С, а на A t = 600°С потребуется еще в 600 раз больше количества теплоты, т. е. 2300 Дж Х 600=1 380 000 Дж. Точно такое же (по модулю) количество теплоты выделится и при остывании этого железа от 620 до 20 °С.

Итак, чтобы найти количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

??? 1. Приведите примеры, показывающие, что количество теплоты, получаемое телом при нагревании, зависит от его массы и изменения температуры. 2. По какой формуле рассчитывается количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении ?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Задание и ответы с физики по классам, скачать рефераты физики , планирование уроков физики 8 класс, все школьнику для подготовки к урокам, план конспектов уроков по физике, физика тесты онлайн, домашние задание и работа

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Как известно, при различных механических процессах происходит изменение механической энергии W meh . Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W_{meh} = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T 1 до температуры T 2 , рассчитывается по формуле

\(~Q = cm (T_2 - T_1) = cm \Delta T, \qquad (1)\)

где c - удельная теплоемкость вещества;

\(~c = \frac{Q}{m (T_2 - T_1)}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость тела C T численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C_T = \frac{Q}{T_2 - T_1} = cm.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = Lm, \qquad (2)\)

где L - удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda m, \qquad (3)\)

где λ - удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m ,

\(~Q = qm, \qquad (4)\)

где q - удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ - джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 154-155.