В каком случае балка работает на изгиб. Чистый изгиб. Поперечный изгиб. Пример задачи на прямой изгиб – расчетная схема

Для наглядного представления характера деформации брусьев (стержней) при изгибе проводится следующий опыт. На боковые грани резинового бруса прямоугольного сечения наносится сетка линий, параллельных и перпендикулярных оси бруса (рис. 30.7, а). Затем к брусу по его концам прикладываются моменты (рис. 30.7, б), действующие в плоскости симметрии бруса, пересекающей каждое его поперечное сечение по одной из главных центральных осей инерции. Плоскость, проходящая через ось бруса и одну из главных центральных осей инерции каждого его поперечного сечения, будем называть главной плоскостью.

Под действием моментов брус испытывает прямой чистый изгиб. В результате деформации, как показывает опыт, линии сетки, параллельные оси бруса, искривляются, сохраняя между собой прежние расстояния. При указанном на рис. 30.7, б направлении моментов эти линии в верхний части бруса удлиняются, а в нижней - укорачиваются.

Каждую линию сетки, перпендикулярную к оси бруса, можно рассматривать как след плоскости некоторого поперечного сечения бруса. Так как эти линии остаются прямыми, то можно предполагать, что поперечные сечения бруса, плоские до деформации, остаются плоскими и в процессе деформации.

Это предположение, основанное на опыте, как известно, носит название гипотезы плоских сечений, или гипотезы Бернулли (см. § 6.1).

Гипотеза плоских сечений применяется не только при чистом, но и при поперечном изгибе. Для поперечного изгиба она является приближенной, а для чистого изгиба строгой, что подтверждается теоретическими исследованиями, проведенными методами теории упругости.

Рассмотрим теперь прямой брус с поперечным сечением, симметричным относительно вертикальной оси, заделанный правым концом и нагруженный на левом конце внешним моментом действующим в одной из главных плоскостей бруса (рис. 31.7). В каждом поперечном сечении этого бруса возникают только изгибающие моменты действующие в той же плоскости, что и момент

Таким образом, брус на всем своем протяжении находится в состоянии прямого чистого изгиба. В состоянии чистого изгиба могут находиться отдельные участки балки и в случае действия на нее поперечных нагрузок; например, чистый изгиб испытывает участок 11 балки, изображенной на рис. 32.7; в сечениях этого участка поперечная сила

Выделим из рассматриваемого бруса (см. рис. 31.7) двумя поперечными сечениями элемент длиной . В результате деформации, как это следует из гипотезы Бернулли, сечения останутся плоскими, но наклонятся по отношению друг к другу на некоторый угол Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол оно займет положение (рис. 33.7).

Прямые пересекутся в некоторой точке А, которая является центром кривизны (или, точнее, следом оси кривизны) продольных волокон элемента Верхние волокна рассматриваемого элемента при показанном на рис. 31.7 направлении момента удлиняются, а нижние укорачиваются. Волокна же некоторого промежуточного слоя перпендикулярного к плоскости действия момента сохраняют свою длину. Этот слой называется нейтральным слоем.

Обозначим радиус кривизны нейтрального слоя, т. е. расстояние от этого слоя до центра кривизны А (см. рис. 33.7). Рассмотрим некоторый слой расположенный на расстоянии у от нейтрального слоя. Абсолютное удлинение волокон этого слоя равно а относительное

Рассматривая подобные треугольники устанавливаем, что Следовательно,

В теории изгиба предполагается, что продольные волокна бруса не давят друг на друга. Экспериментальные и теоретические исследования показывают, что это предположение не влияет существенно на результаты расчета.

При чистом изгибе в поперечных сечениях бруса не возникают касательные напряжения. Таким образом, все волокна при чистом изгибе находятся в условиях одноосного растяжения или сжатия.

По закону Гука для случая одноосного растяжения или сжатия нормальное напряжение о и соответствующая относительная деформация связаны зависимостью

или на основании формулы (11.7)

Из формулы (12.7) следует, что нормальные напряжения в продольных волокнах бруса прямо пропорциональны их расстояниям у от нейтрального слоя. Следовательно, в поперечном сечении бруса в каждой его точке нормальные напряжения пропорциональны расстоянию у от этой точки до нейтральной оси, представляющей собой линию пересечения нейтрального слоя с поперечным сечением (рис.

34.7, а). Из симметрии бруса и нагрузки следует, что нейтральная ось горизонтальна.

В точках нейтральной оси нормальные напряжения равны нулю; по одну сторону от нейтральной оси они растягивающие, а по другую - сжимающие.

Эпюра напряжений о представляет собой график, ограниченный прямой линией, с наибольшими по абсолютной величине значениями напряжений для точек, наиболее удаленных от нейтральной оси (рис. 34.7,б).

Рассмотрим теперь условия равновесия выделенного элемента бруса. Действие левой части бруса на сечение элемента (см. рис. 31.7) представим в виде изгибающего момента остальные внутренние усилия в этом сечении при чистом изгибе равны нулю. Действие правой части бруса на сечение элемента представим в виде элементарных сил о приложенных к каждой элементарной площадке поперечного сечения (рис. 35.7) и параллельных оси бруса.

Составим шесть условий равновесия элемента

Здесь - суммы проекций всех сил, действующих на элемент соответственно на оси - суммы моментов всех сил относительно осей (рис. 35.7).

Ось совпадает с нейтральной осью сечения а ось у перпендикулярна к ней; обе эти оси расположены в плоскости поперечного сечения

Элементарная сила не дает проекций на оси у и и не вызывает момента относительно оси Поэтому уравнения равновесия удовлетворяются при любых значениях о.

Уравнение равновесия имеет вид

Подставим в уравнение (13.7) значение а по формуле (12.7):

Так как (рассматривается изогнутый элемент бруса, для которого ), то

Интеграл представляет собой статический момент поперечного сечения бруса относительно нейтральной оси . Равенство его нулю означает, что нейтральная ось (т. е. ось ) проходит через центр тяжести поперечного сечения. Таким образом, центр тяжести всех поперечных сечений бруса, а следовательно, и ось бруса, являющаяся геометрическим местом центров тяжести, расположены в нейтральном слое. Следовательно, радиус кривизны нейтрального слоя является радиусом кривизны изогнутой оси бруса.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно нейтральной оси :

Здесь представляет собой момент элементарной внутренней силы относительно оси .

Обозначим площадь части поперечного сечения бруса, расположенной над нейтральной осью, - под нейтральной осью.

Тогда представит собой равнодействующую элементарных сил приложенных выше нейтральной оси, ниже нейтральной оси (рис. 36.7).

Обе эти равнодействующие равны друг другу по абсолютной величине, так как их алгебраическая сумма на основании условия (13.7) равна нулю. Эти равнодействующие образуют внутреннюю пару сил, действующую в поперечном сечении бруса. Момент этой пары сил, равный т. е. произведению величины одной из них на расстояние между ними (рис. 36.7), представляет собой изгибающий момент в поперечном сечении бруса.

Подставим в уравнение (15.7) значение а по формуле (12.7):

Здесь представляет собой осевой момент инерции , т. е. оси, проходящей через центр тяжести сечения. Следовательно,

Подставим значение из формулы (16.7) в формулу (12.7):

При выводе формулы (17.7) не учтено, что при внешнем моменте направленном, как это показано на рис. 31.7, согласно принятому правилу знаков, изгибающий момент является отрицательным. Если учесть это, то перед правой частью формулы (17.7) необходимо поставить знак «минус». Тогда при положительном изгибающем моменте в верхней зоне бруса (т. е. при ) значения а получатся отрицательными, что укажет на наличие в этой зоне сжимающих напряжений. Однако обычно знак «минус» в правой части формулы (17.7) не ставится, а эта, формула используется лишь для определения абсолютных значений напряжений а. Поэтому в формулу (17.7) следует подставлять абсолютные значения изгибающего момента и ординаты у. Знак же напряжений всегда легко устанавливается по знаку момента или по характеру деформации балки.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно оси у:

Здесь представляет собой момент элементарной внутренней силы относительно оси у (см. рис. 35.7).

Подставим в выражение (18.7) значение а по формуле (12.7):

Здесь интеграл представляет собой центробежный момент инерции поперечного сечения бруса относительно осей у и . Следовательно,

Но так как

Как известно (см. § 7.5), центробежный момент инерции сечения равен нулю относительно главных осей инерции.

В рассматриваемом случае ось у является осью симметрии поперечного сечения бруса и, следовательно, оси у и являются главными центральными осями инерции этого сечения. Поэтому условие (19.7) здесь удовлетворяется.

В случае, когда поперечное сечение изгибаемого бруса не имеет ни одной оси симметрии, условие (19.7) удовлетворяется, если плоскость действия изгибающего момента проходит через одну из главных центральных осей инерции сечения или параллельна этой оси.

Если плоскость действия изгибающего момента не проходит ни через одну из главных центральных осей инерции поперечного сечения бруса и не параллельна ей, то условие (19.7) не удовлетворяется и, следовательно, нет прямого изгиба - брус испытывает косой изгиб.

Формула (17.7), определяющая нормальное напряжение в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.

Формула (16.7) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна произведению модуля упругости Е на момент инерции Произведение будем называть жесткостью сечения при изгибе; она выражается в и т. д.

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений постоянны по ее длине. В этом случае радиус кривизны изогнутой оси балки имеет постоянное значение [см. выражение (16.7)], т. е. балка изгибается по дуге окружности.

Из формулы (17.7) следует, что наибольшие (положительные - растягивающие) и наименьшие (отрицательные-сжимающие) нормальные напряжения в поперечном сечении бруса возникают в точках, наиболее удаленных от нейтральной оси, расположенных по обе стороны от нее. При поперечном сечении, симметричном относительно нейтральной оси, абсолютные величины наибольших растягивающих и сжимающих напряжений одинаковы и их можно определить по формуле

Для сечений, не симметричных относительно нейтральной оси, например для треугольника, тавра и т. п., расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон различны; поэтому для таких сечений имеются два момента сопротивления:

где - расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон.


Задача. Построить эпюры Q и M для статически неопределимой балки. Вычислим балки по формуле:

n = ΣR - Ш — 3 = 4 — 0 — 3 = 1

Балка один раз статически неопределима, значит одна из реакций является «лишней» неизвестной . За «лишнюю» неизвестную примем реакцию опоры В R В .

Статически определимая балка, которая получается из заданной путем удаления «лишней» связи называется основной системой (б).

Теперь эту систему следует представить эквивалентной заданной. Для этого загружаем основную систему заданной нагрузкой, а в точке В приложим «лишнюю» реакцию R В (рис.в ).

Однако для эквивалентности этого недостаточно , поскольку в такой балке точка В может перемещаться по вертикали , а в заданной балке (рис.а ) такого произойти не может. Поэтому добавляем условие , что прогиб т. В в основной системе должен быть равен 0 . Прогиб т. В складывается из прогиба от действующей нагрузки Δ F и от прогиба от «лишней» реакции Δ R .

Тогда составляем условие совместности перемещений :

Δ F + Δ R =0 (1)

Теперь остается вычислить эти перемещения (прогибы ).

Загружаем основную систему заданной нагрузкой (рис.г) и построим грузовую эпюру М F (рис. д ).

В т.В приложим и построим эп. (рис.е,ж ).

По формуле Симпсона определим прогиб от действующей нагрузки .

Теперь определим прогиб от действия «лишней» реакции R В , для этого загружаем основную систему R В (рис.з ) и строим эпюру моментов от ее действия М R (рис. и ).

Составляем и решаем уравнение (1) :

Построим эп. Q и М (рис. к,л ).

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

Рассчитывать балку на изгиб можно несколькими вариантами:
1. Расчет максимальной нагрузки, которую она выдержит
2. Подбор сечения этой балки
3. Расчет по максимальным допустимым напряжениям (для проверки)
Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.



После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:

Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.

Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала , а для хрупких (чугун) – пределу прочности . Предел текучести и предел прочности мы можем найти по таблицам ниже.




Давайте рассмотрим пару примеров:
1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.
Для начала нам необходимо выбрать расчетную схему.


На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине , то и максимальное напряжение будет в заделке. Давайте найдем его:

P = m * g = 90 * 10 = 900 Н = 0.9 кН


М = P * l = 0.9 кН * 2 м = 1.8 кН*м


По таблице сортамента двутавров находим момент сопротивления двутавра №10.


Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.

б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа


После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.

45.34 МПа – верно, значит данный двутавр выдержит массу 90 кг.


2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.
Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).

1. Прямой чистый изгиб Поперечный изгиб - деформация стержня силами, перпендикулярными оси (поперечными) и парами, плоскости действия которых перпендикулярны нормальным сечениям. Стержень работающий на изгиб называют балкой. При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор - изгибающий момент Mz. Так как Qy=d. Mz/dx=0, то Mz=const и чистый прямой изгиб может быть реализован при нагружении стержня парами сил, приложенными в торцевых сечениях стержня. σ Поскольку изгибающий момент Mz по определению равен сумме моментов внутренних сил относительно оси Оz с нормальными напряжениями его связывает выкающее из этого определения уравнение статики:

Анализ напряженного состояния при чистом изгибе Проанализируем деформации модели стержня на боковой поверхности которого нанесена сетка продольных и поперечных рисок: Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, а следовательно Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон, то есть То есть изо всех компонентов тензора напряжений при чистом изгибе не равно нулю только напряжение σx=σ и чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями σ. При этом часть волокон находится в зоне растяжения (на рис. это-нижние волокна), а другая часть-в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (n-n), не меняющим своей длины, напряжения в котором равны нулю.

Правило знаков изгибающих моментов Правила знаков моментов в задачах теоретической механики и сопротивления материалов не совпадают. Причина этого в различии рассматриваемых процессов. В теоретической механике рассматриваемым процессом является движение или равновесие твердых тел, поэтому два момента на рисунке стремящиеся повернуть Mz стержень в разные стороны (правый момент по часовой стрелке, а левый – против) имеют в задачах теоретической механики разный знак. В задачах сопромата рассматриваются возникающие в теле напряжения и деформации. С этой точки зрения оба момента вызывают в верхних волокнах напряжения сжатия, а в нижних напряжения растяжения, поэтому моменты имеют одинаковый знак. Правила знаков изгибающих моментов относительно сечения С-С представлены на схеме:

Расчет значений напряжений при чистом изгибе Выведем формулы для расчета радиуса кривизны нейтрального слоя и нормальных напряжений в стержне. Рассмотрим призматический стержень в условиях прямого чистого изгиба с поперечным сечением, симметричным относительно вертикальной оси Oy. Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно. Отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mz=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня. При изгибе с постоянной кривизной нейтральный слой стержня становится дугой окружности, ограниченной углом φ. Рассмотрим вырезанный из стержня бесконечно малый элемент длиной dx. При изгибе он превратится в бесконечно малый элемент дуги, ограниченный бесконечно малым углом dφ. φ ρ dφ С учетом зависимостей между радиусом окружности, углом и длиной дуги:

Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости dφ считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным. Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у: Из подобия треугольников COO 1 и O 1 BB 1 следует, что то есть: Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений. Тогда нормальное напряжение, растягивающее волокно АВ, на основании закона Гука будет равно:

Полученная формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя 1/ρ и положение нейтральной оси Ох, от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы Подставляя в это уравнение выражение для σ: и учитывая, что, получаем, что: Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси (оси проходящей через центр тяжести сечения). Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения. Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом. Подставляя в это уравнение выражение для напряжений, получим:

Интеграл в полученном уравнении ранее изучен: Jz- момент инерции относительно оси Оz. В соответствии с выбранным положение осей координат он же главный центральный момент инерции сечения. Получаем формулу для кривизны нейтрального слоя: Кривизна нейтрального слоя 1/ρ является мерой деформации стержня при прямом чистом изгибе. Кривизна тем меньше, чем больше величина EJz, называемая жесткостью поперечного сечения при изгибе. Подставляя выражение в формулу для σ, получаем: Таким образом, нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси. геометрическая характеристика, имеющая размерность м 3 называется момент сопротивления при изгибе.

Определение моментов сопротивления Wz поперечных сечений - У простейших фигур в справочнике (лекция 4) или рассчитать самостоятельно - У стандартных профилей в сортаменте ГОСТ

Расчет на прочность при чистом изгибе Проектировочный расчет Условие прочности при расчете чистого изгиба будет иметь вид: Из данного условия определяют Wz, а далее либо подбирают нужный профиль из сортамента стандартного проката, либо по геометрическим зависимостям рассчитывают размеры сечения. При расчете балок из хрупких материалов следует различать наибольшие растягивающие и наибольшие сжимающие напряжения, которые сравниваются соответственно с допускаемыми напряжениями на растяжение и сжатие. Условий прочности в этом случае будет два, отдельно по растяжению и по сжатию: Здесь - соответственно допускаемые напряжения на растяжение и на сжатие.

2. Прямой поперечный изгиб τxy τxz σ При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мz и поперечная сила Qy, которые связаны с нормальными и касательными напряжениями Выведенная в случае чистого изгиба стержня формула для расчета нормальных напряжений в случае прямого поперечного изгиба, строго говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями, происходит депланация (искривление) поперечных сечении, то есть нарушается гипотеза плоских сечений. Однако для балок с высотой сечения h

При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы: а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия σy могут быть достаточно велики и во много раз превышать продольные напряжения, убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы; б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис, напряжения от давления на верхние волокна балки. Сравнивая их с продольными напряжениями σz, имеющими порядок: приходим к выводу, что напряжения σy

Расчет касательных напряжений при прямом поперечном изгибе Примем, что касательные напряжения равномерно распределены по ширине поперечного сечения. Непосредственное определение напряжений τyx затруднительно, поэтому находим равные им касательные напряжения τxy, возникающие на продольной площадке с координатой у элемента длиной dx, вырезанного из балки z x Mz

От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями τ. Нормальные напряжения σ и σ+dσ , действующие на торцевых площадках элемента, также заменим их равнодействующими y Mz τ Mz+d. Mz by ω y z Qy Qy +d. Qy dx Nω+d Nω d. T статический момент отсеченной части площади поперечного сечения ω относительно оси Оz. Рассмотрим условие равновесия отсеченного элемента составив для него уравнение статики Nω dx b

откуда после несложных преобразований, учитывая, что получим Формула Журавского Kасательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси Mz z Учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют, а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям

3. Составные балки при изгибе Касательные напряжения в продольных сечениях являются выражением существующей связи между слоями стержня при поперечном изгибе. Если эта связь в некоторых слоях нарушена, характер изгиба стержня меняется. В стержне, составленном из листов, каждый лист при отсутствии сил трения изгибается самостоятельно. Изгибающий момент равномерно распределяется между составными листами. Максимальное значение изгибающего момента будет в середине балки и будет равно. Mz=P·l. Наибольшее нормальное напряжение в поперечном сечении листа равно:

Если листы плотно стянуть достаточно жесткими болтами, стержень будет изгибаться как целый. В этом случае наибольшее нормальное напряжение оказывается в n раз меньше, т. е. В поперечных сечениях болтов при изгибе стержня возникают поперечные силы. Наибольшая поперечная сила будет в сечении, совпадающем с нейтральной плоскостью изогнутого стержня.

Эту силу можно определить из равенства сумм поперечных сил в сечениях болтов и продольной равнодействующей касательных напряжений в случае целого стержня: где m - число болтов. Сопоставим изменение кривизны стержня в заделке в случае связанного и несвязанного пакетов. Для связанного пакета: Для несвязанного пакета: Пропорционально изменениям кривизны меняются и прогибы. Таким образом, по сравнению с целым стержнем набор свободно сложенных листов оказывается в n 2 раз более гибким и только в n раз менее прочным. Это различие в коэффициентах снижения жесткости и прочности при переходе к листовому пакету используют на практике при создании гибких рессорных подвесок. Силы трения между листами повышают жесткость пакета, так как частично восстанавливают касательные силы между слоями стержня, устраненные при переходе к листовому пакету. Рессоры нуждаются поэтому в смазке листов и их следует оберегать от загрязнения.

4. Рациональные формы поперечных сечений при изгибе Наиболее рациональным является сечение, обладающее минимальной площадью при заданной нагрузке на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Для этого необходимо, чтобы наибольшие напряжения растяжения и наибольшие напряжения сжатия одновременно достигали допускаемых напряжений. Приходим к рациональному для пластичного материала сечению в форме симметричного двутавра, у которого возможно большая часть материала сосредоточена на полках, соединенных стенкой, толщина которой назначается из условий прочности стенки по касательным напряжениям. . К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение

Для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие которое вытекает из требования Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов. а-двутавр, б- швеллер, в - неравнобокий уголок, холодногнутые замкнутые г-равнобокий уголок. сварные профили