Как найти площадь многоугольника? Смотреть что такое "Площадь многоугольника" в других словарях

Каждый, кто изучал в школе математику и геометрию, хотя бы поверхностно знает эти науки. Но со временем, если в них не практиковаться, познания забываются. Многие даже считают, что только зря потратили своё время, изучая геометрические расчёты. Однако они ошибаются. Технические работники выполняют повседневную работу, связанную с геометрическими расчётами. Что касается расчета площади многоугольника, то и эти знания находят своё применение в жизни. Понадобятся они хотя бы для того, чтобы рассчитать площадь земельного участка. Итак, давайте узнаем, как найти площадь многоугольника.

Определение многоугольника

Сначала определимся с тем, что такое многоугольник. Это плоская геометрическая фигура, которая образовалась в результате пересечения трех или более прямых. Другое простое определение: многоугольник — это замкнутая ломаная. Естественно, при пересечении прямых образуются точки пересечения, их количество равно количеству прямых, образовывающих многоугольник. Точки пересечения называют вершинами, а отрезки, образованные от прямых, - сторонами многоугольника. Смежные отрезки многоугольника находятся не на одной прямой. Отрезки, являющиеся несмежными, - это те, которые не проходят через общие точки.

Сумма площадей треугольников

Как находить площадь многоугольника? Площадь многоугольника - это внутренняя часть плоскости, которая образовалась при пересечении отрезков или сторон многоугольника. Поскольку многоугольник - это сочетание таких фигур, как треугольник, ромб, квадрат, трапеция, то универсальной формулы для вычисления его площади просто нет. На практике наиболее универсальным является метод разбиения многоугольника на более простые фигуры, нахождение площади которых не вызывают затруднений. Сложив суммы площадей этих простых фигур, получают площадь многоугольника.

Через площадь окружности

В большинстве случаев многоугольник имеет правильную форму и образует фигуру с равными сторонами и углами между ними. Рассчитать площадь в этом случае очень просто при помощи вписанной или описанной окружности. Если известна площадь окружности, то её необходимо умножить на периметр многоугольника, а затем полученное произведение поделить на 2. В итоге получается формула расчёта площади такого многоугольника: S = ½∙P∙r., где P — площадь окружности, а r — периметр многоугольника.

Метод разбиения многоугольника на «удобные» фигуры - самый популярный в геометрии, он позволяет быстро и правильно найти площадь многоугольника. 4 класс средней школы обычно изучает такие методы.

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин. Какие их виды существуют? Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника.

Площадь многоугольника

Расчет площади Многоугольника, используя радиус вписанного круга и длину стороны:[ (A×P)/2 ][ Apothem(A) = side/(2×Tan(π/N)) ] Введите длину = Введите кол-во сторон = Площадь Многоугольника = Расчет площади по длине стороны:Площадь Многоугольника = ((side)² * N) / (4Tan(π / N))Периметр Многоугольника = N * (side) Расчет площади по радиусу описанной окружности:Площадь Многоугольника = ½ * R² * Sin(2π / N) Расчет площади по радиусу вписанного круга:Площадь Многоугольника = A² * N * Tan(π / N)где, A = R * Cos(π / N) По радиусу вписанного круга и длине стороны:Площадь Многоугольника = (A * P) / 2где A = сторона / (2 * Tan(π / N))где,

  • N = Количество сторон,
  • A = Радиус вписанного круга,
  • R = Радиус описанной окрудности,
  • P = Периметр

Примеры: Задача 1: Найдите площадь и периметр многоугольника, если длина стороны = 2 и количество сторон = 4.

Площадь правильного многоугольника

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R2;
  2. квадрата: S = 2 * R2;
  3. шестиугольника: S = (3√3)/2 * R2.

Ситуация с неправильной фигурой Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника? То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры.


Обычно они записываются как (x1; y1) для первой, (x2; y2) - для второй, а n-ая вершина имеет такие значения (xn; yn).

Площадь и периметр многоугольника

Тогда площадь многоугольника определяется, как сумма n слагаемых.

Внимание

Каждое из них выглядит так: ((yi+1 +yi)/2) * (xi+1 — xi).


В этом выражении i изменяется от единицы до n. Стоит отметить, что знак результата будет зависеть от обхода фигуры.
При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.


Пример задачи Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5).

Инфо

Требуется вычислить площадь многоугольника. Решение.


По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8. Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 — 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин.
Все идет так, как нужно.
Шаг 1: Найдем радиус вписанного круга.А = R * Cos(π / N)= 2 * Cos(3.14 / 5)= 2 * Cos(0.63)= 2 * 0.81Апофема (радиус вписанного круга) = 1.62.Шаг 2: Найдем площадь.Площадь = A² * N * Tan(π / N)= 1.62² * 5 * Tan(3.14 / 5)= 2.62 * 5 * Tan(0.63)= 13.1 * 0.73Площадь = 9.5. Задача 4: Найти площадь многоугольника используя Апофему (радиус вписанного круга), если длина стороны равна 2, а количество сторон 5.Step 1: Найдем Апофему.Апофема = длина стороны / (2 * Tan(π / N))= 2 / (2 * Tan(π / 4))= 2 / (2 * Tan(0.785))= 2 / (2 * 0.999)= 2 / 1.998Апофема (А) = 1. Шаг 2: Найдем периметр.Периметр (P) = (N * (длина стороны) = 4 * 2 = 8 Шаг 3: Найдем площадь.Площадь = (A * P) / 2= (1 * 8) / 2= 8 / 2Площадь = 4.

Приведенные выше примеры показывают, как вычислить площадь и периметр многоугольника вручную.

Правильный многоугольник

S tan⁡〖(180°)/n〗)/n)/2 tan⁡〖(180°)/n〗=√(S/(n tan⁡〖(180°)/n〗)) R=a/(2 sin⁡〖(180°)/n〗)=√((4S tan⁡〖(180°)/n〗)/n)/2 sin⁡〖(180°)/n〗=√(S/(n cos⁡〖(180°)/n〗)) Вычислить периметр правильного многоугольника через площадь возможно, если представить его в виде произведения количества сторон n на полученный вместо стороны радикал, а затем упростить выражение, внеся n под корень. P=na=n√((4S tan⁡〖(180°)/n〗)/n)=√(4nS tan⁡〖(180°)/n〗) Угол правильного многоугольника можно вычислить по формуле, которая имеет только одну переменную – количество сторон фигуры, поэтому не требует никаких изменений.

Калькулятор площади многоугольника

Подставляя вместо n количество сторон фигуры можно получить формулу для определения площади любого правильного полигона, которая будет представлять собой площадь квадрата a^2, умноженного на определенный коэффициент.

Интересно, что при увеличении количества углов этот коэффициент также будет увеличиваться, к примеру, для пентагона - 1,72, а гексагона - 2,59. Так как около любого правильного полигона можно описать окружность или вписать ее в него, мы можем использовать соответствующие радиусы для вычисления площадей многоугольников.

Сторона и радиус описанной окружности для любого полигона соотносятся как: a = R × 2 sin (pi/n), где R – радиус описанной окружности, n – количество сторон геометрической фигуры.

Для вписанной в полигон окружности соотношение немного изменяется и выглядит как: a = r × 2 tg (pi/n), где r – радиус вписанной окружности.

Как рассчитать площадь правильного многоугольника

Пример многоугольникаДанный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.

Смотрим на картинку - площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE.

Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно - площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.

А это довольно удобно, например, при бытовом ремонте - длины-то всяко проще померять, чем углы.

Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры.

Как узнать площадь многоугольника?

Как поступить с правильным многоугольником, у которого больше четырех вершин? Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы. Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула: Sn = 1/2 * n * Rn2 * sin (360º/n), где n - количество вершин многоугольника.
Таким образом, для определения площади любого правильного полигона вам понадобится указать количество сторон n и любой параметр на выбор:

  • длина стороны a;
  • радиус вписанной окружности r;
  • радиус описанной окружности R.

Рассмотрим пару примеров для нахождения площади любого многоугольника.

Примеры из жизни Пчелиные соты Пчелиные соты - уникальный природный объект, который состоит из множества гексагональных призматических ячеек.

Давайте подсчитаем, сколько таких шестиугольников находится в одних сотах.

Для этого нам нужно узнать общую площадь и площадь одной ячейки.

Из Википедии мы знаем, что стандартная рамка для сот имеет размеры 435 х 300 мм, соответственно, общая площадь составляет 130 500 квадратных миллиметров.

Там же указано, что горизонтальный диаметр одной ячейки составляет примерно 5,5 мм.

Диагональ 2 Угол α {$ main.angles $} Угол β {$ main.angles $} Введите любые 3 величины Сторона A Сторона B Высота ha Высота hb Диагональ 1 Диагональ 2 Угол α {$ main.angles $} Угол β {$ main.angles $} Введите любые 3 величины Основание A Основание C Высота H Дополните боковые стороны для поиска периметра Сторона B Сторона D Введите 1 величину Сторона A Радиус описанной окружности (R) Радиус вписанной окружности (r) Количество сторон многоугольника Введите 1 величину Сторона A Радиус описанной окружности (R) Радиус вписанной окружности (r) Введите 1 величину Сторона A = радиусу описанной окружности (R) Радиус вписанной окружности (r) Результат расчета

  • Периметр: {$ result.p|number:4 $}
  • Площать: {$ result.s|number:4 $}

Многоугольник или полигон - геометрическая фигура, которая имеет n-ное количество углов.
В общем случае многоугольник - это часть плоскости, которая ограничена замкнутой ломанной.

Геометрия многоугольников В целом такая геометрическая фигура может иметь абсолютно любой вид.

К примеру, символы звезды и компаса, полигон для моделирования или грань шестеренки - многоугольники.

Многоугольные фигуры разделяются на две группы:

  • невыпуклые, которые имеют любую причудливую форму с возможными самопересечениями (самый очевидный пример - звезда);
  • выпуклые, все точки которых находятся по одну сторону от прямой, проведенной через две соседние вершины (квадрат, треугольник).

Выпуклый полигон, у которого все углы равны и все стороны равны, считается правильным и имеет собственное название.

Умение определять площадь различных фигур играет немалую роль в жизни каждого человека. Рано или поздно приходится иметь дело с этими знаниями. К примеру, в процессе ремонта помещения для определения необходимого количества рулонов обоев, линолеума, паркета, плитки в ванную или на кухню нужно уметь рассчитывать необходимую площадь.

Знаниями в области геометрии пользовались еще в древнем Вавилоне и других странах. На первых шагах к культуре всегда возникала необходимость измерить участок, расстояние. При строительстве первых значительных сооружений требовались умения выдерживать вертикаль, спроектировать план.

Роль эстетических потребностей людей также имела немалое значение. Украшение жилища, одежды, рисование картин способствовало процессу формирования и накопления сведений в области геометрии, которые люди тех времён добывали опытным путем, по крупицам и передавали из поколения в поколение.

Сегодня знания геометрии необходимы и закройщику, и строителю, и архитектору и каждому простому человеку в быту.

Поэтому нужно учиться рассчитывать площадь различных фигур, и помнить, что каждая из формул может пригодиться впоследствии на практике, в том числе, и формула правильного шестиугольника. Шестиугольником называется такая многоугольная фигура, общее количество углов которой равно шести.

Площадь правильного шестиугольника

Правильным шестиугольником называют шестиугольную фигуру, которая имеет равные стороны. Углы у правильного шестиугольника также между собой равны.

В повседневной жизни мы часто можем встретить предметы, имеющие форму правильного шестиугольника. Это и металлическая гайка, и ячейки пчелиных сот, и структура снежинки. Шестиугольными фигурами отлично заполняются плоскости. Так, например, при мощении тротуарной плитки мы можем наблюдать, как плитка укладывается одна возле другой, не оставляя пустых мест.

Свойства правильного шестиугольника

  • Правильный шестиугольник всегда будет иметь равные углы, каждый из которых составляет 120˚.
  • Сторона фигуры равняется радиусу описанной окружности.
  • Все стороны в правильном шестиугольнике равны.
  • Правильный шестиугольник плотно заполняет плоскость.

Площадь правильного шестиугольника можно рассчитать, разбив его на шесть треугольников, каждый из которых будет иметь равные стороны.

Для расчета площади правильного треугольника используется следующая формула:

Зная площадь одного из треугольников, можно легко рассчитать площадь шестиугольника. Формула для ее расчета проста: поскольку правильный шестиугольник - это шесть равных треугольников, следует площадь нашего треугольника умножить на 6.

Если провести от центра фигуры к любой из ее сторон перпендикуляр, получим отрезок, который называется апофема. Рассмотрим, как найти площадь шестиугольника при известной апофеме:

  1. Площадь = 1/2*периметр*апофему.
  2. Предположим, наша апофема равняется 5√3 см.

  1. Используя апофему, находим периметр: Поскольку апофема расположена перпендикулярно к стороне шестиугольника, то углы треугольника, созданного при помощи апофемы, будут равняться 30˚-60˚-90˚. Каждая сторона полученного треугольника будет соответствовать: x-x√3-2x, где короткая сторона, которая расположена напротив угла в 30˚- это x, длинная сторона, расположенная напротив угла в 60˚ - это x√3, а гипотенуза - 2x.
  2. Поскольку апофема представлена, как x√3, можно подставить ее в формулу a = x√3 и решить. Если, к примеру, апофема = 5√3, тогда подставим эту величину в формулу и получим: 5√3 см = x√3, или x = 5 см.
  3. Итак, короткая сторона треугольника равняется 5 см. поскольку эта величина является половиной длины стороны шестиугольника, умножаем 5 на 2 и получим 10 см, которая является длиной стороны.
  4. Зная длину стороны, умножим её на 6 и получим периметр шестиугольника:10 см х 6 = 60 см
  5. Подставим полученные результаты в нашу формулу:

Площадь = 1/2*периметр*апофему

Площадь = ½*60см*5√3

Теперь осталось упростить ответ, чтобы избавиться от квадратных корней, а полученный результат укажем в квадратных сантиметрах:

½ * 60 см * 5√3 см =30 * 5√3 см =150 √3 см =259.8 см²

Видео о том, как найти площадь правильного шестиугольника

Площадь неправильного шестиугольника

Существует несколько вариантов определения площади неправильного шестиугольника:

  • Метод трапеции.
  • Метод расчета площади неправильных многоугольников при помощи оси координат.
  • Метод разбивания шестиугольника на другие фигуры.

В зависимости от исходных данных, которые вам будут известны, подбирается подходящий метод.

Метод трапеции

Площадь шестиугольника, имеющего произвольную (неправильную) форму, рассчитывается методом трапеции, суть которого состоит в разделении шестиугольника на отдельные трапеции и последующим вычислением площади каждой из них.

Метод с осями координат

Кроме этого, площадь неправильного шестиугольника можно рассчитать при помощи метода расчета площади неправильных многоугольников. Рассмотрим его на следующем примере:

Вычисление будем выполнять методом использования координат вершин многоугольника:

  1. На этом этапе следует сделать таблицу и записать координаты вершин x и y. Выбираем вершины в последовательном порядке по направлению против часовой стрелки, завершив конец списка повторной записью координаты первой вершины:

  1. Теперь следует умножить значения координаты х 1-й вершины на y 2-й вершины и продолжить таким образом умножение далее. Затем необходимо сложить полученные результаты. В нашем случае получилось 82:

  1. Последовательно умножаем значения координат y1-й вершины на значения координат х 2-й вершины. Суммируем полученные результаты. В нашем случае получилось 38:

  1. Вычитаем сумму, которую получили на четвертом этапе из суммы, которая получилась на третьем этапе: 82 – (-38) = 120

  1. Теперь необходимо разделить результат, который был получен на предыдущем этапе и найдем площадь нашей фигуры: S= 120/2 = 60 см²

Метод разбивания шестиугольника на другие фигуры

Каждый многоугольник можно разделить на несколько других фигур. Это могут быть треугольники, трапеции, прямоугольники. Исходя из известных данных, пользуясь формулами определения площадей перечисленных фигур, последовательно вычисляются их площади и затем суммируются.

Некоторые неправильные шестиугольники состоят из двух параллелограммов. Для определения площади параллелограмма следует умножить его длину на ширину и затем сложить две уже известные площади.

Видео о том, как найти площадь многоугольника

Площадь равностороннего шестиугольника

Равносторонний шестиугольник имеет шесть равных сторон и является правильным шестиугольником.

Площадь равностороннего шестиугольника равняется 6 площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны, поэтому для нахождения площади такого шестиугольника достаточно будет знать площадь хотя бы одного треугольника.

Для нахождения площади равностороннего шестиугольника используется, конечно же, формула площади правильного шестиугольника, описанная выше.

А Вы знали, как найти площадь шестиугольника? Как думаете, где эти знания пригодятся Вам в жизни? Поделитесь своим мнением в

1.1 Вычисление площадей в древности

1.2 Различные подходы к изучению понятий «площадь», «многоугольник», «площадь многоугольника»

1.2.1 Понятие о площади. Свойства площади

1.2.2 Понятие о многоугольнике

1.2.3 Понятие о площади многоугольника. Дескриптивное определение

1.3 Различные формулы площадей многоугольников

1.4 Вывод формул площадей многоугольников

1.4.1 Площадь треугольника. Формула Герона

1.4.2 Площадь прямоугольника

1.4.3 Площадь трапеции

1.4.4 Площадь четырёхугольника

1.4.5 Универсальная формула

1.4.6 Площадь n-угольника

1.4.7 Вычисление площади многоугольника по координатам его вершин

1.4.8 Формула Пика

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

1.6 Равносоставленность треугольников. Теорема Больяя-Гервина

1.7 Отношение площадей подобных треугольников

1.8 Фигуры с наибольшей площадью

1.8.1 Трапеция или прямоугольник

1.8.2 Замечательное свойство квадрата

1.8.3 Участки другой формы

1.8.4 Треугольник с наибольшей площадью

Глава 2. Методические особенности изучения площадей многоугольников в математических классах

2.1 Тематическое планирование и особенности преподавания в классах с углубленным изучением математики

2.2 Методика проведения уроков

2.3 Результаты опытно-экспериментальной работы

Заключение

Литература

Введение

Тема «Площади многоугольников» является неотъемлемой частью школьного курса математики, что вполне естественно. Ведь исторически само возникновение геометрии связано с потребностью сравнения земельных участков той или иной формы. Вместе с тем следует отметить, что образовательные возможности раскрытия этой темы в средней школе используются далеко не полностью.

Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования.

Наряду с решением основной задачи углубленное изучение математики предусматривает формирование у учащихся устойчивого интереса к предмету, выявление и развитие их математических способностей, ориентацию на профессии, существенным образом связанные с математикой, подготовку к обучению в вузе.

Квалификационная работа включает содержание курса математики общеобразовательной школы и ряд дополнительных вопросов, непосредственно примыкающих к этому курсу и углубляющих его по основным идейным линиям.

Включение дополнительных вопросов преследует две взаимосвязанные цели. С одной стороны, это создание в совокупности с основными разделами курса базы для удовлетворения интересов и развития способностей учащихся, имеющих склонность к математике, с другой – выполнение содержательных пробелов основного курса, придающее содержанию углубленного изучения необходимую целостность.

Квалификационная работа состоит из введения, двух глав, заключения и цитируемой литературы. В первой главе рассматриваются теоретические основы изучения площадей многоугольников, а во второй главе – непосредственно уже методические особенности изучения площадей.

Глава 1. Теоретические основы изучения площадей многоугольников

1.1Вычисление площадей в древности

Зачатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.

Еще в 4 – 5 тысяч лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служит эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, или можно заполнить плоскость без пробелов.

В древнем Китае мерой площади был прямоугольник. Когда каменщики определяли площадь прямоугольной стены дома, они перемножали высоту и ширину стены. Таково принятое в геометрии определение: площадь прямоугольника равна произведению его смежных сторон. Обе эти стороны должны быть выражены в одних и тех же линейных единицах. Их произведение и составит площадь прямоугольника, выраженную в соответствующих квадратных единицах. Скажем, если высота и ширина стены измерены в дециметрах, то произведение обоих измерений будет выражено в квадратных дециметрах. И если площадь каждой облицовочной Плотки составляет квадратный дециметр, то полученное произведение укажет число плиток, нужное для облицовки. Это вытекает из утверждения, положенного в основу измерения площадей: площадь фигуры, составленной из непересекающихся фигур, равна сумме их площадей.

Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам, и умножалась на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту и т.п. Для вычисления площади

четырехугольника со сторонами (рис. 1.1) применялась формула (1.1)

т.е. умножались полусуммы противоположных сторон.

Эта формула явно неверна для любого четырехугольника, из нее вытекает, в частности, что площади всех ромбов одинаковы. Между тем, очевидно, что у таких ромбов площади зависят от величины углов при вершинах. Данная формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь четырехугольников, у которых углы близки к прямым.

Для определения площади

равнобедренного треугольника (рис. 1.2), в котором , египтяне пользовались приближенной формулой:

(1.2) Рис. 1.2 Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной и высотой треугольника, иными словами, чем ближе вершина (и ) к основанию высоты из . Вот почему приближенная формула (1.2) применима лишь для треугольников с сравнительно малым углом при вершине.

Но уже древние греки умели правильно находить площади многоугольников. В своих «Началах» Евклид не употребляет слова «площадь», так как он под самим словом «фигура» понимает часть плоскости, ограниченную той или иной замкнутой линией. Евклид не выражает результат измерения площади числом, а сравнивает площади разных фигур между собой.

Как и другие ученые древности, Евклид занимается вопросами превращения одних фигур в другие, им равновеликие. Площадь составной фигуры не изменится, если ее части расположить по-другому, но без пересечения. Поэтому, например, можно, исходя из формул площади прямоугольника, находить формулы площадей других фигур. Так, треугольник разбивается на такие части, из которых затем можно составить равновеликий ему прямоугольник. Из этого построения следует, что площадь треугольника равна половине произведения его основания на высоту. Прибегая к подобной перекройке, находят, что площадь параллелограмма равна произведению основания на высоту, площадь трапеции – произведению полусуммы оснований на высоту.

Когда каменщикам приходится облицовывать стену сложной конфигурации, они могут определить площадь стены, подсчитав число пошедших на облицовку плиток. Некоторые плитки, естественно, придется обкалывать, чтобы края облицовки совпали с кромкой стены. Число всех пошедших в работу плиток оценивает площадь стены с избытком, число необломанных плиток – с недостатком. С уменьшением размеров клеток количество отходов уменьшается, и площадь стены, определяемая через число плиток, вычисляется все точнее.

Одним из поздних греческих математиков – энциклопедистов, труды которого имели главным образом прикладной характер, был Герон Александрийский, живший в 1 в. н. э. Будучи выдающимся инженером, он был назван также «Герон Механик». В своем произведении «Диоптрика» Герон описывает разные машины и практические измерительные инструменты.

Одна из книг Герона была названа им «Геометрика» и является своего рода сборником формул и соответствующих задач. Она содержит примеры на вычисление площадей квадратов, прямоугольников и треугольников. О нахождении площади треугольника по его сторонам Герон пишет: « Пусть, например, одна сторона треугольника имеет в длину 13 мерных шнуров, вторая 14 и третья 15. Чтобы найти площадь, поступают вот как. Сложи 13, 14 и 15; получится 42. Половина этого будет 21. Вычти из этого три стороны одну за другой; сперва вычти 13 – останется 8, затем 14 – останется 7 и, наконец, 15 – останется 6. А теперь перемножь их: 21раз по 8 даст 168, возьми это 7 раз – получится 1176, а это еще 6 раз – получится 7056. Отсюда квадратный корень будет 84. Вот сколько мерных шнуров будет в площади треугольника».