Влияние легирующих элементов на свойства стали. Виды, марки и назначение сталей. Легированная сталь

Легирующие элементы – химические элементы, специально вводимые в сталь для получения заданных свойств. Улучшают , физические и химические свойства основного материала.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной стали. хромистых сталей — (0…-100) o С.

Дополнительные легирующие элементы:

  • Бор — 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 o С .
  • Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60) o С.
  • Титан (см. ) (~0,1%) вводят для измельчения зерна в хромомарганцевой стали.
  • Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снижает до –20…-120 o С . Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к сталей, содержащих никель.
  • Ванадий в количестве (0.1…0.3) % в хромистых сталях измельчает зерно и повышает и .
  • Введение в хромистые стали никеля , значительно повышает прочность и прокаливаемость, понижает порог хладоломкости, но при этом повышает склонность к отпускной хрупкости (этот недостаток компенсируется введением в сталь молибдена). Хромоникелевые стали, обладают наилучшим комплексом свойств. Однако никель является дефицитным, и применение таких сталей ограничено.Значительное количество никеля можно заменить медью, это не приводит к снижению вязкости.

При легировании хромомарганцевых сталей кремнием получают, стали – хромансиль (20ХГС, 30ХГСА) . Стали обладают хорошим сочетанием прочности и , хорошо свариваются, штампуются и обрабатываются резанием.Кремний повышает ударную вязкость и температурный запас вязкости.

Добавка свинца, кальция – улучшает обрабатываемость резанием. Применение упрочнения улучшает комплекс .

Распределение легирующих элементов в стали.

Легирующие элементы растворяются в основных железоуглеродистых сплавов (феррит, аустенит, цементит), или образуют специальные карбиды. Растворение легирующих элементов в Fe α происходит в результате замещения атомов железа атомами этих элементов. Эти атомы создают в решетке напряжения, которые вызывают изменение ее периода. Изменение размеров решетки вызывает изменение свойств феррита – прочность повышается, пластичность уменьшается. Хром, молибден и вольфрам упрочняют меньше, чем никель, кремний и марганец. Молибден и вольфрам, а также кремний и марганец в определенных количествах, снижают вязкость.

В сталях карбиды образуются металлами, расположенными в таблице Менделеева левее железа (хром, ванадий, ), которые имеют менее достроенную d – электронную полосу.

В процессе карбидообразования углерод отдает свои валентные электроны на заполнение d – электронной полосы атома металла, тогда как у металла валентные электроны образуют металлическую связь, обуславливающую металлические свойства карбидов.

При соотношении атомных радиусов углерода и металла более 0,59 образуются типичные химические соединения: Fe 3 C, Mn 3 C, Cr 23 C 6 , Cr 7 C 3 , Fe 3 W 3 C – которые имеют сложную кристаллическую решетку и при нагреве растворяются в аустените.

При соотношении атомных радиусов углерода и металла менее 0,59 образуются фазы внедрения: Mo 2 C, WC, VC, TiC, TaC, W 2 C – которые имеют простую и трудно растворяются в аустените.

Никель. Металл серебристо-белого цвета, тяжелый (плотность 8900 кг/м 3), температура плавления чуть меньше, чем у железа (1453 °С), прочность - 40-50 кгс/мм 2 , твердость - НВ80, доста­точно пластичный, имеет высокую коррозионную стойкость, химическую стойкость к воде, воздуху и кислотам. Исключение составляют серосодержащие соединения. При взаимодействии с ними на поверхности металла образуются сульфиты и сульфаты (пленки зеленого и коричневого цвета).

Чистый никель не токсичен, хорошо полируется, характерный металлический блеск сохраняется длительное время, поэтому ис­пользуется в качестве защитно-декоративных покрытий столовых приборов и посуды, а также для изготовления инструментов, метал­лической мебели, деталей автомобилей, мотоциклов, велосипедов.

Никель хорошо сохраняет свои свойства при работе в агрессив­ных средах, поэтому применяется для производства химической аппаратуры.

Из никеля изготовляют металлогалантерею: пряжки одежные и обувные, заколки, зажимы, металлические пуговицы.

Никель широко используется в качестве легирующего элемента в сплавах с железом и медью.

Хром. Металл серо-стального цвета, тяжелый (плотность -7140 кг/м 3), температура плавления (1910 °С) выше, чем у железа.


Металл химически малоактивен, устойчив даже к атмосферному кислороду, но имеет высокую хрупкость, поэтому не применяется в качестве конструкционного материала.

В основном используется в качестве защитно-декоративных покрытий. Хромовые покрытия обеспечивают высокую износо­стойкость и стойкость к коррозии. Хромируют инструменты (бе­лые, блестящие), корпуса и детали часов. Часто хромированные часы изготовляются вместе с браслетом. Иногда хромированные часы с браслетом имеют на корпусе крышку, тогда они выглядят как блестящий браслет.

Хромируются детали велосипедов, мотоциклов, машин (бам­перы, решетки радиаторов) и др.

В металлургии хром используется в качестве легирующего элемента, особенно в легированных сталях, в нихромах (сплавах железа, никеля и хрома).

Хром является необходимым элементом при получении дубите­лей для производства кож в кожевенно-обувной промышленности, а также красителей для тканей в текстильной промышленности.

Цинк - металл светло-серого цвета с синеватым отливом, тяжелый (плотность - 7140 кг/м 3), легкоплавкий (419 °С), проч­ность - не более 15 кгс/мм 2 , пластичен.

Марки: ЦО (99,975% цинка) и ЦЗ (97,5% цинка). В цинке всегда присутствуют вредные примеси: свинец, мышьяк, сурьма, кадмий, от которых трудно избавиться.

На воздухе покрывается оксидной пленкой, которая и предох­раняет металл от коррозии.

Более половины добываемого цинка используется в качестве защитно-декоративных покрытий стальных изделий, например, оцинкованная листовая сталь и оцинкованная посуда. Оцинковке подвергаются днища кузовов автомобилей.



Оцинковка проводится в электролитической ванне (тогда по­крытие будет дозированным, т. е. определенной толщины) или обычным окунанием (тогда покрытие будет недозированным).

Оцинкованная посуда (миски и ведра) обязательно должна иметь маркировку "Не для термической обработки: токсично!".



Металпохозяйственные товары

Эта посуда предназначена для хранения продуктов, но не для при­готовления пищи.

Сейчас оцинкованные ведра, миски и лейки все более заменя­ются изделиями из пластмасс.

Цинк применяют в качестве легирующих элементов многих сплавов, особенно медных (латунь, нейзильбер).

Олово - металл серебристо-белого цвета, тяжелый (плотность 7300 кг/м 3), один из самых легкоплавких (232 °С), очень мягкий и пластичный, легко прокатывается в фольгу, прочность -2-3 кгс/мм 2 , твердость - НВ5. Олово устойчиво к действию большинства пище­вых продуктов и не образует токсичных соединений, поэтому его широко применяют как защитное покрытие изделий из углеродистых конструкционных сталей, для лужения посуды и изготовления кон­сервных банок. Правда, в последнее время олово стараются заменить другими материалами из-за его высокой стоимости. Олово входит в состав бронз и многокомпонентных латуней.

При некоторых условиях эксплуатации стальных изделий и конструкций обычные физико-механические характеристики материал не удовлетворяют поставленным требованиям. В таких случаях стали легируют – добавляют при выплавке к исходному составу другие химические элементы (в основном – тоже металлы, хотя как будет показано далее, есть и исключения). В результате сталь становится прочнее, твёрже, устойчивее к внешним неблагоприятным факторам, хотя и теряет в своей пластичности, что в большинстве ситуаций ухудшает её обрабатываемость.

Технические требования к легированным сталям регламентированы ГОСТ 4543 (применительно к тонколистовому стальному прокату действует ещё ГОСТ 1542). В то же время ряд комплексно и сложнолегированных сталей производится согласно ТУ металлургических предприятий.

С формальной точки зрения, некоторые химические элементы, содержащиеся в обычных сталях, как конструкционных, так и обычного качества, тоже можно называть легирующими. К таким можно отнести, например, медь (до 0,2%), кремний (до 0,37%) и т.д.

Постоянными спутниками любой стали являются фосфор и сера . Тем не менее, металловеды относят их по большей части не к легирующим добавкам, а к примесям , хотя иногда процентное содержание другого легирующего элемента может быть даже меньшим.


Причина заключается в том, что любая примесь является следствием либо чистоты исходной руды (марганец), либо специфики металлургических процессов плавки (сера, фосфор). Теоретически выплавленная без меди, фосфора и серы сталь обладала бы такими же механическими свойствами. Легирование же имеет своей конечной целью именно повышение определённых технических характеристик стали. При этом фосфор и сера однозначно относятся к вредным, но неизбежным примесям . Наличие меди увеличивает пластичность, зато способствует налипанию поверхности металла , имеющего избыточную (более 0,3%) концентрацию меди на поверхность смежной детали. При работе конструкции в условиях интенсивного трения это является крупным недостатком.

Наличие химического элемента с концентрацией более 1% даёт основание вводить его условное обозначение в марку стали. Кроме вышеупомянутой стали 65Г, подобной чести удостаивается также и алюминий (присутствующий, в частности, в стали О8Ю). В данном случае алюминий вводится в обычную конструкционную сталь О8 с целью её раскисления , а то, что при этом несколько повышаются показатели её пластичности, является лишь удачным сопутствующим обстоятельством. Борирование стали обеспечивает ей повышенную последующую деформируемость , поэтому даже микродобавки бора в химический состав стали отмечаются соответственно изменённой её маркировкой (например, в стали 20Р присутствует всего 0,001…0,005 % бора).

В целом принято, что:

  • Стали, содержащие только один, намеренно вводимый в состав элемент;
  • Стали, в составе которых имеются иные, кроме углерода и марганца, химические элементы в количестве не более 1%

— легированными не считаются. С другой стороны, если в составе выплавляемого сплава процентное содержание железа не превышает 55%, то такой материал уже не может называться легированной сталью.

Общая классификация легирующих элементов в сталях

Преобладающее положение в списке легирующих элементов имеют металлы. Исключение составляют кремний и бор.

Наличие легирующих элементов оказывает преобладающее влияние на вид диаграммы состояния системы «железо-углерод», и на наличие/отсутствие химических соединений в конечном продукте (нитридов, карбидов и более сложных по формуле компонентов). Последние, в свою очередь существенно видоизменяют микроструктуру стали.

В связи с этим, легирующие сталь металлы подразделяются на две группы:

  1. Металлы, которые увеличивают область твёрдых растворов на основе γ-железа (аустенитная область на диаграмме состояния), что приводит к повышению разнообразия конечной микроструктуры легированной стали после её упрочняющей термообработки). К таким элементам относятся никель, марганец, кобальт, медь, а также азот.
  2. Металлы и химические элементы, наличие которых сужает γ-область , зато повышает прочность стали. К ним относят хром, вольфрам. ванадий, молибден, титан.

В процессе получения легированных сталей изменяются следующие закономерности в её свойствах.

Как известно, разные элементы обладают различной кристаллической структурой (для металлов это – гранецентрированная и объёмноцентрированная). Само же железо имеет объёмноцентрированную решётку.

При внедрении в сталь металла со сходным типом решётки область существования α-раствора (феррита) увеличивается за счёт соответствующего уменьшения аустенитной области. В результате микроструктура стабилизируется, что допускает более широкий выбор технологических процессов последующей термообработки.
Наоборот, при наличии в стали металла с другим типом решётки аустенитная область сужается. Такая сталь при своей последующей механической обработке будет более пластичной.
Легирование стали некоторыми металлами вообще невозможно. Это происходит, если разница в атомных диаметрах элементов превышает 15%.


Именно по этой причине такой металл как цинк вводят в качестве легирующей добавки только в цветные металлы и сплавы. Ограниченное применение для целей легирования стали находят также химические элементы, которые неспособны образовывать при выплавке устойчивые химические соединения с углеродом, железом и азотом.

Зависимость характеристик стали от насыщения её определёнными химическими элементами окончательно ещё не изучено. Это объясняется тем, что при комплексном легировании каждый компонент может взаимодействовать по разному с другими, причём такие изменения закономерному объяснению часто не поддаются. Поэтому вопросы целесообразности применения того либо иного легирующего элемента разрешаются экспериментальным путём.

Доказанными считаются следующие положения:

  • Эффективность процесса повышается при увеличении растворимости азота и углерода в легирующей добавке, и в основном железе;
  • Стабильность окончательных свойств стали повышается при увеличении размеров аустенитной зоны;
  • Качество стали, легированной металлами и элементами с меньшим, чем у железа порядковым номером (в таблице химических элементов Д. Менделеева) хуже, чем в противоположном случае;
  • Более тугоплавкие, по сравнению с железом, металлы повышают прочность стали при любых вариантах её дальнейшей термообработки.

Впрочем, вторичные взаимодействия, сильно зависящие от способа выплавки стали, могут существенно корректировать эти положения. Поэтому на данном этапе с уверенностью можно говорить лишь о влиянии конкретных легирующих элементов на свойства стали.

Влияние хрома

Хром – металл, особенно часто применяемый для целей легирования. Его добавляют как в конструкционные стали (например, 20Х, 40Х), так и в инструментальные (9ХС, Х12М). При этом конечные свойства легированной хромом стали сильно зависят от его содержания в ней. При низких (менее 0,5…0,7%) концентрациях структура стали становится боле грубой, и чувствительной к направлению её последующей обработки , особенно при прокатке и гибке в холодном состоянии. Ухудшается также равномерность распределения основных составляющих микроструктуры.

Как уже было отмечено выше, одной из главных целей легирования является формирование в стали карбидов металлов , прочность и твёрдость которых заметно выше, чем основного металла. Хром образует два вида карбидов: гексагональный Cr 7 C 3 и кубический Cr 23 С 6 , причём в обоих случаях прочность и хладостойкость стали возрастают. Особенностью карбидов хрома является присутствие в их структуре также и других элементов – железа и ванадия. В результате температура эффективного растворения снижается, что, в свою очередь, приводит к таким положительным особенностям сталей, легированных хромом, как прокаливаемость, возможность вторичного дисперсионного твердения и теплостойкость. Поэтому стали, легированные хромом, имеют увеличенную эксплуатационную стойкость при тяжёлых условиях своей эксплуатации.

Однако увеличение содержания хрома в стали приводит и к отрицательным последствиям. При его концентрации более 5…10% резко ухудшается карбидная однородность материала, что сопровождается нежелательными явлениями при её механической обработке : даже при нагреве пластичность стали невысока, поэтому при ковке с большими степенями деформации высокохромистые стали подвержены растрескиванию.

При чрезмерном карбидообразовании увеличивается также количество концентраторов напряжений , что негативно влияет на стойкость таких сталей к динамическим нагрузкам. Учитывая это, содержание хрома в сталях не должно превышать 5..6% .

Влияние вольфрама и молибдена

Действие этих легирующих добавок в сталях примерно одинаково, поэтому их рассматривают совместно. Вольфрам и молибден улучшают дисперсионное твердение сталей, что увеличивает их теплостойкость, особенно при длительной работе с повышенными температурами. Мартенситостареющие стали обладают уникальным комплексом свойств: они сочетают достаточную пластичность и вязкость с высокой поверхностной прочностью, а потому находят широкое применение в качестве инструментальных сталей , предназначенных для холодной объёмной штамповки с высокими степенями деформации. Причиной этому – формирование интерметаллидных соединений Fe 2 W и Fe 2 Mo 3 , которые способствуют последующему появлению специальных карбидов (чаще – хрома и ванадия). Поэтому часто, совместно с вольфрамом и молибденом стали легируют также и этими металлами. Примером служат инструментальные стали типа Х4В2М1Ф1, конструкционные 40ХВМФА и т.п.

Наиболее эффективно такое легирование для сталей, содержащих сравнительно большое количество углерода. Именно этим объясняется преимущественное применение сталей, содержащих вольфрам и молибден, для производства ответственных шестерён, валов и других деталей машин, работающих при сложных, резко циклических нагрузках. Наличие рассматриваемых легирующих компонентов улучшает закаливаемость сталей и способствует более устойчивым конечным характеристикам изделий, изготовленных из них.

Имеются и отрицательные стороны избыточного легирования данными металлами. Например, повышение концентрации молибдена более 3% способствует обезуглероживанию стали при нагреве, становится причиной хрупкого разрушения (особенно, если в составе такой стали присутствует в увеличенном — более 2% — количестве кремний). Предельное содержание вольфрама в стали – 10…12% — связано, главным образом, с резким повышением стоимости готового продукта.

Влияние ванадия

Ванадий чаще применяется как компонент сложного легирования. Его наличие придаёт легированным сталям более равномерную и благоприятную структуру , которая мало изменяется даже с термообработкой. Кроме того, ванадий стабилизирует γ-фазу, что увеличивает стойкость стали к напряжениям сдвига (как известно, именно при сдвиговых деформациях металлы имеют наименьшую прочность).

На твёрдость стали ванадий практически не влияет , это особенно заметно для конструкционных сталей, содержащих меньше углерода, чем инструментальные. В комплекснолегированных сталях ванадий увеличивает теплостойкость, что повышает их устойчивость от хрупкого разрушения. В этом смысле влияние ванадия противоположно влиянию молибдена. Особенностью термообработки легированных сталей, содержащих ванадий, считается невозможность выполнения высокого отпуска после закалки, поскольку последующая пластичность стали снижается. Поэтому в сталях, предназначенных для изготовления крупных деталей или поковок, процентное содержание ванадия ограничивается 3..4%.

Влияние кремния, марганца и кобальта

Кремний – единственный из неметаллов, «допущенный» к процессам легирования. Объясняется это двумя факторами – дешевизной элемента и однозначной зависимостью твёрдости от процентного содержания кремния в стали. Именно поэтому кремний часто применяется при выплавке недорогих низколегированных строительных сталей, а также сталей, для эксплуатационной долговечности которых важно оптимальное сочетание прочности и упругости. Чаще всего совместно с кремнием используется и марганец – примерами могут быть стали 09Г2С, 10ГС, 60С2 и т.д.

В инструментальных сталях кремний как легирующий компонент используется редко, и притом только в сочетании с другими металлами, которые нейтрализуют его отрицательные свойства – малую эксплуатационную пластичность и вязкость. Из таких сталей – в частности, 9ХС, 6Х3С и т.п. — изготавливают режущий и штамповый инструмент , для которого требуется сочетание высокой твёрдости и стойкости при резких нагрузках.

Как и кремний, кобальт при внедрении в структуру стали не образует собственных карбидов, зато в сложнолегированных сталях интенсифицирует их образование при отпуске. Поэтому кобальт применяется не самостоятельно, а в сочетании с такими металлами, как ванадий, хром, вольфрам , при этом, ввиду дефицитности кобальта его содержание обычно не превышает 2,5…3%.

Влияние никеля

Никель – единственный из легирующих компонентов сталей, который повышает её пластичность и снижает твёрдость . Поэтому одним никелем стали не легируют . Зато в сочетании с марганцем никель приводит к заметному повышению прокаливаемости стали, что очень важно при изготовлении крупных деталей машин, для которых важна высокая эксплуатационная долговечность. При этом наличие никеля снижает требования к точности соблюдения температурных интервалов термообработки.

Легирование никелем имеет и ряд особенностей. В частности, никель, не образуя собственных карбидов, способствует увеличению скоплений «чужих» карбидов по границам зёрен, в результате снижается теплостойкость, и повышается хрупкость в диапазоне 20…400 0 С. Поэтому процентное содержание никеля в легированных сталях строго увязывается с наличием в них марганца и хрома: при их наличии предельная концентрация никеля составляет 2%, а при их отсутствии – не более 0,5…1%.

Легированные стали для специальных областей использования содержат в себе и ряд других металлов (например, титан, алюминий и др.). Выбор вида стали диктуется эксплуатационными и финансовыми соображениями.

Легированные стали. Основные легирующие элементы в сталях, их влияние на структуру и свойства. Промышленные стали. Их назначение, требуемые свойства, термическая обработка.

Появление и широкое распространение легированных сталей обусловлено непрерывным ростом требований, предъявляемых к материалам.

Легированными называют стали, содержащие в своем составе кроме обычных примесей специально вводимые элементы, в количестве, обеспечивающем требуемые физические и механические свойства. Эти элементы называются легирующими.

Для легирования стали применяют хром (Cr), никель (Ni), марганец (Mn), кремний (Si), вольфрам (W), молибден (Mo), ванадий (V), кобальт (Co), титан (Ti), алюминий (Al), медь (Cu) и другие элементы. Марганец считается легирующим компонентом лишь при содержании его в стали более 1 %, а кремний – при содержании более 0,8 %. Легирующие элементы либо распределяются между фазами, существующими в обычной углеродистой стали (феррит и цементит) и, таким образом, изменяют их состав и свойства, либо образуют новые фазы, характерные только для легированных сталей

(интерметаллидные соединения, специальные карбиды и т. д.).

Легирующие элементы изменяют критические точки стали и оказывают существенное влияние на кинетику фазовых превращений, протекающих в стали при термической обработке.

По характеру влияния на критические температуры полиморфного превращения железа легирующие элементы разделяются на две группы. К первой группе относятся Ni,Mn,N,Cuи другие элементы, расширяющие область существования γ - твердого раствора (рис.1а). Эти элементы сFeα иFeγ образуют твердые растворы замещения (легированный феррит и легированный аустенит), повышают точку А 4 и понижают точку А 3. При содержании некоторых элементов этой группы вышеn(рис.1а) критическая точка превращения γ-α находится ниже комнатной температуры. Такие сплавы даже при медленном охлаждении приобретают структуру γ - твердого раствора (легированного аустенита).

а)Ni,Mn,Cu,Co,N,Cи др. б)Cr,Si,W,Mo,V,Alи др.

Рис.1. Влияние легирующих элементов на критические точки железа (схема).

Ко второй группе относятся Cr,Si,W,Mo,Vи другие элементы, ограничивающие область существования γ -твердого раствора (рис.1б). Эти элементы понижают точку А 4 и повышают точку А 3 . При содержании элемента этой группы в количествах, превышающихm(рис.1б), сплавы при всех температурах вплоть до температуры плавления имеют строение α -твердого раствора (легированного феррита).

Легирующие элементы оказывают существенное влияние на положение критических точек SиEдиаграммыFe-Fe 3 C. Большинство элементов(Ni,Si,Co,Cr,W,Mn) сдвигает их влево, т.е. в сторону уменьшения содержания углерода. Сильные карбидообразующие элементы (V,Ti,Nb), наоборот, повышают содержание углерода в эвтектоиде, т.е. сдвигают точкуSвправо.

Все легирующие элементы, кроме алюминия и кобальта, увеличивают устойчивость переохлажденного аустенита (сдвигают С-образные кривые вправо) и, следовательно, уменьшают критическую скорость закалки. Поэтому закалка изделий из легированных сталей производится при относительно невысоких скоростях охлаждения (в масле или даже на воздухе).

Легирующие элементы за исключением алюминия, кобальта и кремния снижают температуру начала мартенситного превращения и тем самым способствуют увеличению количества остаточного аустенита в закаленной стали.

По отношению к углероду легирующие элементы также разделяются на две группы:

    элементы, не образующие в сталях карбидов (Ni,Si,Co,Cu,Al);

    элементы, образующие карбиды (Mn,Cr,W,Mo,V,Ti,Nbи др.).

    элементы первой группы полностью растворяются в твердом растворе (феррите, аустените). Элементы второй группы частично растворяются в твердом растворе и частично идут на образование карбидов.

Карбидообразующие элементы обладают большим, чем железо, сродством к углероду. По возрастанию сродства к углероду, а следовательно устойчивости карбидных фаз, карбидообразующие элементы располагаются в следующий ряд: Fe-Mn-Cr-Mo-W-V-Nb-Zr-Ti. Чем устойчивее карбид, тем труднее он растворяется в аустените и выделяется при отпуске.

При введении в сталь в сравнительно небольшом количестве легирующий карбидообразующий элемент сначала растворяется в цементите, замещая часть атомов железа; при этом образуется легированный цементит, например (FeMn) 3 C. С увеличением содержания легирующего элемента сверх предела растворимости образуются специальные карбиды типа Сr 7 С 3 ,Mn 3 Cи др.

По строению кристаллической решетки различают карбиды двух типов. К карбидам первой группы относятся Fe 3 C,Mn 3 C, Сr 7 С 3, Cr 23 C 6 . Такие карбиды недостаточно прочны и при нагреве в процессе термической обработки стали распадаются с образованием твердого раствора легирующих элементов в аустените.

Карбиды второй группы Mo 2 C,WC,TiCимеют простые кристаллические решетки. Они характеризуются большей прочностью и распадаются при более высоких температурах нагрева. Все карбиды обладают высокой твердостью, но твердость карбидов второй группы несколько выше твердости карбидов первой группы.

С повышением дисперсности карбидов растет твердость и прочность стали.

Маркировка легированных сталей.

В России принята буквенно-цифровая система маркировки легированных сталей. Обозначения состоят из цифр и букв, указывающих на примерный состав стали.

Каждому легирующему элементу присвоена буква русского алфавита: А-азот, Б- ниобий, В-вольфрам, Г-марганец, Д-медь, Е-селен, К-кобальт, М-молибден, Н-никель, П- фосфор, Р- бор, С-кремний, Т-титан, Ф-ванадий, Х-хром, Ц- цирконий, Ч-иттрий и редкоземельные металлы, Ю- алюминий.

В конструкционных сталях первые две цифры указывают среднее содержание углерода в сотых долях процента (например, в стали 30ХГСА- примерно 0,3%С).В инструментальных сталях цифры соответствуют десятым долям процента(сталь 5ХНМ- 0,5%С). Если сталь имеет более 1% углерода, то

начальную цифру, характеризующую содержание углерода, обычно опускают (стали ХВГ, В1).

Цифры, стоящие после букв, обозначающих легирующие элементы, указывают приблизительное содержание легирующего элемента в целых процентах (например, в стали 34ХН3М содержание никеля-3%). При содержании легирующего элемента менее 1% цифра после буквы не ставится.

Буква в конце марки означает: А - данная сталь относится к высококачественной, что в основном определяется количеством вредных примесей серы и фосфора; Л - сталь относится к литейным; Ш и ВД- особо высококачественная сталь, полученная электрошлаковым и вакуумно-дуговым переплавом.

Для сталей специального назначения применяют дополнительную индексацию. Буквы вначале марки стали обозначают: А - автоматная, Ш- шарикоподшипниковая, Р- быстрорежущая, Е- магнитотвердая, Э- электротехническая.

Классификация легированных сталей.

Легированные стали делятся:

2) по суммарному количеству легирующих элементов : низколегированные (до 2%), среднелегированные (2,5-10%), высоколегированные (более 10%);

3) по химическому составу : хромистые, хромоникелевые, марганцовистые и т.д.;

4) классификация легированных сталей по структуре:

По структуре в равновесном состоянии, т.е. после медленного охлаждения(отжига), стали разделяются на следующие группы:

    доэвтектоидные стали , имеющие в структуре избыточный легированный феррит;

    эвтектоидные , имеющие перлитную структуру;

    заэвтектоидные, имеющие в структуре избыточные (вторичные) карбиды;

    ледебуритные стали, имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. Образование карбидной эвтектики типа ледебурита в подобных сталях при их кристаллизации связано с тем, что ряд легирующих элементов сдвигает точку Е диаграммыFe-Fe 3 Cвлево, т.е. в сторону меньшего содержания углерода. Так, например, в стали, содержащей 5% хрома, предельная растворимость углерода в аустените (точка Е) смещается до 1,3%, а при содержании хрома 10% - до 1,0% С.

    Ледебуритные стали содержат таким образом, меньше углерода, чем белые чугуны, и поэтому могут подвергаться горячей обработке давлением. Врезультате ковки первичные карбиды принимают форму обособленных частиц.

К сталям ледебуритного класса принадлежат бысрорежущие стали (Р 6 М 5, Р18)

    К ферритному классу относятся малоуглеродистые стали, легированные большим количеством элементов, сокращающих область существования γ-твердого раствора. Стали этого класса имеют ферритную структуру с небольшим количеством карбидов. Феррит не претерпевает превращений (перекристаллизации) при нагреве вплоть до температуры плавления. Примерами таких сталей являются трансформаторные стали, высокохромистые коррозионностойкие и жаростойкие стали (08Х13, 08Х17Т, 15Х25Т и др.)

    В зависимости от структуры, получаемой при охлаждении на воздухе (нормализации) принято разделять стали на три класса:перлитный мартенситный и аустенитный.

Для легированных сталей перлитного класса кривая охлаждения на воздухе пересекает область перлитного превращения переохлажденного аустенита (рис.2а), и после нормализации образуется структура феррито-карбидной смеси (перлита, сорбита, троостита). По структуре в равновесном состоянии (после отжига) перлитные стали разделяются на доэвтектоидные, эвтектоидные и заэвтектоидные стали. К этому классу относятся все конструкционные и некоторые инструментальные легированные стали с суммарным содержанием легирующих элементов 5-8%.

Рис.2. Диаграмма изотермического распада аустенита различных классов стали:

а – перлитного; б – мартенситного; в – аустенитного

К мартенситному классу принадлежат стали, которые после охлаждения на воздухе (нормализации) приобретают структуру мартенсита с небольшим количеством остаточного аустенита. Суммарное содержание легирующих элементов в этих сталях составляет 10-15%. Повышенное содержание легирующих элементов обусловливает значительное смещение С-образных кривых вправо, и аустенит подобных сталей в условиях нормализации переохлаждается без распада до температуры мартенситного превращения (рис.2б). К мартенситному классу относятся хромистые нержавеющие стали (20Х13) и жаропрочные (15Х11МФ и др.), применяющиеся для лопаточного аппарата паровых и газовых турбин.

Аустенитный класс составляют стали с высоким содержанием никеля или марганца, т.е. элементов, расширяющих область существования γ -твердого раствора (легированного аустенита). При комнатной температуре эти стали имеют структуру аустенита. Общее содержание легирующих элементов в аустенитных сталях составляет 10-40% и более. Столь высокое содержание легирующих элементов приводит не только к резкому смещению С-образных кривых вправо, но и к снижению температуры начала мартенситного превращения в область отрицательных температур (рис.2.в).

К аустенитному классу принадлежат нержавеющие, кислотостойкие, жаропрочные и др. стали с особыми свойствами (стали 12Х18Н9Т, Х18Н10Т и др).

К промежуточным классам относятся: мартенсито-ферритный, аустенито-мартенситный, аустенитно-ферритный.