А– приближенное значение величины А. Приближенные значения и погрешности приближений

ПРИБЛИЖЕННЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ

  1. Приближенное значение величины. Абсолютная и относительная погрешности

Решение практических задач, как правило, связано с числовыми значениями величин. Эти значения получаются либо в результате измерения, либо в результате вычислений. В большинстве случаев значения величин, которыми приходится оперировать, являются приближенными.

Пусть X - точное значение некоторой величины, а х - наилучшее из известных ее приближенных значений. В этом случае погрешность (или ошибка) приближения х определяется разностью Х-х. Обычно знак этой ошибки не имеет решающего значения, поэтому рассматривают ее абсолютную величину:

Число в этом случае называется предельной абсолютной погрешностью, или границей абсолютной погрешности приближения х.

Таким образом, предельная абсолютная погрешность приближенного числа х - это всякое число, не меньшее абсолютной погрешности е х этого числа.

Пример: Возьмем число. Если же вызвать на индикатор 8-разрядного МК, получим приближение этого числа: Попытаемся выразить абсолютную погрешность значения. Получили бесконечную дробь, не пригодную для практических расчетов. Очевидно, однако, что следовательно, число 0,00000006 = 0,6 * 10 -7 можно считать предельной абсолютной погрешностью приближения, используемого МК вместо числа

Неравенство (2) позволяет установить приближения к точному значению X по недостатку и избытку:

Во многих случаях значения границы абсолютной ошибки так же как и наилучшие значения приближения х , получаются на практике в результате измерений. Пусть, например, в результате повторных измерений одной и той же величины х получены значения: 5,2; 5,3; 5,4; 5,3. В этом случае естественно принять за наилучшее приближение измеряемой величины среднее значение х = 5,3. Очевидно также, что граничными значениями величины х в данном случае будут НГ Х = 5,2, ВГ Х = 5,4, а граница абсолютной погрешности х может быть определена как половина длины интервала, образуемого граничными значениями НГ Х и ВГ Х ,

т.е.

По абсолютной погрешности нельзя в полной мере судить о точности измерений или вычислений. Качество приближения характеризуется величиной относительной погрешности, которая определяется как отношение ошибки е х к модулю значения X (когда оно неизвестно, то к модулю приближения х ).

Предельной относительной погрешностью (или границей относительной погрешности) приближенного числа называется отношение предельной абсолютной погрешности к абсолютному значению приближения х :

Относительную погрешность выражают обычно в процентах.

Пример Определим предельные погрешности числа х=3,14 как приближенного значения π. Так как π=3,1415926…., то |π-3,14|

  1. Верные и значащие цифры. Запись приближенных значений

Цифра числа называется верной (в широком смысле), если ее абсолютная погрешность не превосходит единицы разряда, в котором стоит эта цифра.

Пример. Х=6,328 Х=0,0007 X

Пример: А). Пусть 0 = 2,91385, В числе а верны в широком смысле цифры 2, 9, 1.

Б) Возьмем в качестве приближения к числу = 3,141592... число = 3,142. Тогда (рис.) откуда следует, что в приближенном значении = 3,142 все цифры являются верными.

В) Вычислим на 8-разрядном МК частное точных чисел 3,2 и 2,3, получим ответ: 1,3913043. Ответ содержит ошибку, поскольку

Рис. Приближение числа π

разрядная сетка МК не вместила всех цифр результата и все разряды начиная с восьмого были опущены. (В том, что ответ неточен, легко убедиться, проверив деление умножением: 1,3913043 2,3 = 3,9999998.) Не зная истинного значения допущенной ошибки, вычислитель в подобной ситуации всегда может быть уверен, что ее величина не превышает единицы самого младшего из изображенных на индикаторе разряда результата. Следовательно, в полученном результате все цифры верны.

Первая отброшенная (неверная) цифра часто называется сомнительной.

Говорят, что приближенное данное записано правильно, если в его записи все цифры верные. Если число записано правильно, то по одной только его записи в виде десятичной дроби можно судить о точности этого числа. Пусть, например, записано приближенное число а = 16,784, в котором все цифры верны. Из того, что верна последняя цифра 4, которая стоит в разряде тысячных, следует, что абсолютная погрешность значения а не превышает 0,001. Это значит, что можно принять т.е. а = 16,784±0,001.

Очевидно, что правильная запись приближенных данных не только допускает, но и обязывает выписывать нули в последних разрядах, если эти нули являются выражением верных цифр. Например, в записи = 109,070 нуль в конце означает, что цифра в разряде тысячных верна и она равна нулю. Предельной абсолютной погрешностью значения , как следует из записи, можно считать Для сравнения можно заметить, что значение с = 109,07 является менее точным, так как из его записи приходится принять, что

Значащими цифрами в записи числа называются все цифры в его десятичном изображении, отличные от нуля, и нули, если они расположены между значащими цифрами или стоят в конце для выражения верных знаков.

Пример а) 0,2409 - четыре значащие цифры; б) 24,09 - четыре значащие цифры; в) 100,700 - шесть значащих цифр.

Выдача числовых значений в ЭВМ, как правило, устроена таким образом, что нули в конце записи числа, даже если они верные, не сообщаются. Это означает, что если, например, ЭВМ показывает результат 247,064 и в то же время известно, что в этом результате верными должны быть восемь значащих цифр, то полученный ответ следует дополнить нулями: 247,06400.

В процессе вычислений часто происходит округление чисел, т.е. замена чисел их значениями с меньшим количеством значащих цифр. При округлении возникает погрешность, называемая погрешностью округления. Пусть х - данное число, а х 1 - результат округления. Погрешность округления определяется как модуль разности прежнего и нового значений числа:

В отдельных случаях вместо ∆ окр приходится использовать его верхнюю оценку.

Пример Выполним на 8-разрядном МК действие 1/6. На индикаторе высветится число 0,1666666. Произошло автоматическое округление бесконечной десятичной дроби 0,1(6) до числа разрядов, вмещающихся в регистре МК. При этом можно принять

Цифра числа называется верной в строгом смысле, если абсолютная погрешность этого числа не превосходит половины единицы разряда, в котором стоит эта цифра.

Правила записи приближенных чисел.

  1. Приближенные числа записываются в форме х ±  х. Запись X = х ±  x означает, что неизвестная величина X удовлетворяет следующим неравенствам: x-  x  x

При этом погрешность  х рекомендуется подбирать так, чтобы

а) в записи  х было не более 1-2 значащих цифр;

б) младшие разряды в записи чисел х и  х соответствовали друг другу.

Примеры: 23,4±0,2 ; 2,730±0,017 ; -6,97  0,10.

  1. Приближенное число может быть записано без явного указания его предельной абсолютной погрешности. В этом случае в его записи (мантиссе) должны присутствовать только верные цифры (в широком смысле, если не сказано обратное). Тогда по самой записи числа можно судить о его точности.

Примеры. Если в числе А=5,83 все цифры верны в строгом смысле, то А=0,005. Запись В=3,2 подразумевает, что В=0,1. А по записи С=3,200 мы можем заключить, что С=0,001. Таким образом, записи 3,2 и 3,200 в теории приближенных вычислений означают не одно и то же.

Цифры в записи приближенного числа, о которых нам неизвестно, верны они или нет, называются сомнительными. Сомнительные цифры (одну-две) оставляют в записи чисел промежуточных результатов для сохранения точности вычислений. В окончательном результате сомнительные цифры отбрасываются.

Округление чисел.

  1. Правило округления. Если в старшем из отбрасываемых разрядов стоит цифра меньше пяти, то содержимое сохраняемых разрядов числа не изменяется. В противном случае в младший сохраняемый разряд добавляется единица с тем же знаком, что и у самого числа.
  2. При округлении числа, записанного в форме х± х, его предельная абсолютная погрешность увеличивается с учетом погрешности округления.

Пример: Округлим до сотых число 4,5371±0,0482. Неправильно было бы записать 4,54±0,05 , так как погрешность округленного числа складывается из погрешности исходного числа и погрешности округления. В данном случае она равна 0,0482 + 0,0029 = 0,0511 . Округлять погрешности всегда следует с избытком, поэтому окончательный ответ: 4,54±0,06.

Пример Пусть в приближенном значении а = 16,395 все цифры верны в широком смысле. Округлим а до сотых: a 1 = 16,40. Погрешность округления Для нахождения полной погрешности, нужно сложить c погрешностью исходного значения а 1 которая в данном случае может быть найдена из условия, что все цифры в записи а верны: = 0,001. Таким образом, . Отсюда следует, что в значении a 1 = 16,40 цифра 0 не верна в строгом смысле.

  1. Вычисление погрешностей арифметических действий

1. Сложение и вычитание . Предельной абсолютной погрешностью алгебраической суммы является сумма соответствующих погрешностей слагаемых:

Ф.1  (X+Y) =  Х +  Y ,  (X-Y) =  Х +  Y .

Пример. Даны приближенные числа Х = 34,38 и Y = 15,23 , все цифры верны в строгом смысле. Найти  (X-Y) и  (X-Y). По формуле Ф.1 получаем:

 (X-Y) = 0,005 + 0,005 = 0,01.

Относительную погрешность получим по формуле связи:

2. Умножение и деление. Если  Х  Y

Ф.2  (X · Y) =  (X/Y) =  X +  Y.

Пример . Найти  (X·Y) и  (X·Y) для чисел из предыдущего примера. Сначала с помощью формулы Ф.2 найдем  (X·Y):

 (X·Y)=  X +  Y=0,00015+0,00033=0,00048

Теперь  (X·Y) найдем с помощью формулы связи:

 (X·Y) = |X·Y|·  (X·Y) = |34,38 -15,23|·0,00048  0,26 .

3. Возведение в степень и извлечение корня . Если  Х

Ф.З

4. Функция одной переменной.

Пусть даны аналитическая функция f(x) и приближенное число с ±  с. Тогда, обозначая через малое приращение аргумента, можно написать

Если f "(с)  0, то приращение функции f(с+ ) - f(c) можно оценить ее дифференциалом:

f(c+  ) - f(c)  f "(c) ·  .

Если погрешность  с достаточно мала, получаем окончательно следующую формулу:

Ф.4  f(c) = |f "(с)|·  с.

Пример. Даны f(x) = arcsin x , с = 0,5 , с = 0,05 . Вычислить  f(с).

Применим формулу Ф.4:

И т. д.

5. Функция нескольких переменных.

Для функции нескольких переменных f(x1, ... , хn) при xk= ck ±  ck справедлива формула, аналогичная Ф.4:

Ф.5  f(c1, ... ,сn)  l df(c1, ... ,сn) | = |f "x1 (с1)|·  с1+... + |f "xn (сn)|·  сn.

Пример Пусть х = 1,5, причем т.е. все цифры в числе х верны в строгом смысле. Вычислим значение tg x . С помощью МК получаем: tgl,5= 14,10141994. Для определения верных цифр в результате оценим его абсолютную погрешность: отсюда следует, что в полученном значении tgl,5 ни одну цифру нельзя считать верной.

  1. Методы оценки погрешности приближенных вычислений

Существуют строгие и нестрогие методы оценки точности результатов вычислений.

1. Строгий метод итоговой оценки . Если приближенные вычисления выполняются по сравнительно простой формуле, то с помощью формул Ф.1-Ф.5 и формул связи погрешностей можно вывести формулу итоговой погрешности вычислений. Вывод формулы и оценка погрешности вычислений с ее помощью составляют суть данного метода.

Пример Значения a = 23,1 и b = 5,24 даны цифрами, верными в строгом смысле. Вычислить значение выражения

С помощью МК получаем В = 0,2921247. Используя формулы относительных погрешностей частного и произведения, запишем:

Т.е.

Пользуясь МК, получим 5, что дает. Это означает, что в результате две цифры после запятой верны в строгом смысле: В=0,29±0,001.

2. Метод строгого пооперационного учета погрешностей . Иногда попытка применения метода итоговой оценки приводит к слишком громоздкой формуле. В этом случае более целесообразным может оказаться применение данного метода. Он заключается в том, что оценивается точность каждой операции вычислений отдельно с помощью тех же формул Ф.1-Ф.5 и формул связи.

3. Метод подсчета верных цифр . Данный метод относится к нестрогим. Оценка точности вычислений, которую он дает, в принципе не гарантирована (в отличие от строгих методов), но на практике является довольно надежной. Суть метода заключается в том, что после каждой операции вычислений в полученном числе определяется количество верных цифр с помощью нижеследующие правил.

П.1 . При сложении и вычитании приближенных чисел в результате верными следует считать, те цифры, десятичным разрядам которых соответствуют верные цифры во всех слагаемых. Цифры всех других разрядов кроме самого старшего из них перед выполнением сложения или вычитания должны быть округлены во всех слагаемых.

П.2. При умножении и делении приближенных чисел в результате верными следует считать столько значащих цифр, сколько их имеет приближенное данное с наименьшим количеством верных значащих цифр. Перед выполнением этих действий среди приближенных данных нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы они имели лишь на одну значащую цифру больше него.

П.З. При возведении в квадрат или в куб, а также при извлечении квадратного или кубического корня в результате следует считать верными столько значащих цифр, сколько имелось верных значащих цифр в исходном числе.

П.4. Количество верных цифр в результате вычисления функции зависит от величины модуля производной и от количества верных цифр в аргументе. Если модуль производной близок к числу 10k (k - целое), то в результате количество верных цифр относительно запятой на k меньше (если k отрицательно, то - больше), чем их было в аргументе. В данной лабораторной работе для определенности примем соглашение считать модуль, производной близким к 10k , если имеет место неравенство:

0,2·10K  2·10k .

П.5. В промежуточных результатах помимо верных цифр следует оставлять одну сомнительную цифру (остальные сомнительные цифры можно округлять) для сохранения точности вычислений. В окончательном результате оставляют только верные цифры.

Вычисления по методу границ

Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений - метод границ.

Пусть f(x, у) - функция, непрерывная и монотонная в некоторой области допустимых значений аргументов х и у. Нужно получить ее значение f(a, b), где а и b - приближенные значения аргументов, причем достоверно известно, что

НГ a a a ; НГ b ВГ b .

Здесь НГ, ВГ - обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения f(a, b), при известных границах значений а и b.

Допустим, что функция f(x, у) возрастает по каждому из аргументов x и y . Тогда

f (НГ а , НГ b f (a , b )f (ВГ a ВГ b ).

Пусть f(x, у) возрастает по аргументу х и убывает по аргументу у . Тогда будет строго гарантировано неравенство

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«КУРЛЕКСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

Томского района
«Математика

в науке и жизни»

«Урок  семинар» по теме:

«Приближенные значения величин»
(О прикладной направленности абсолютной и относительной погрешностей)
Алгебра 7 класс

Учитель математики:

Серебренникова Вера Александровна

Курлек - 2006


«Математика в науке и жизни»
«Язык математики –

это всеобщий язык науки»
Тема: Приближенные значения величин. (Обобщающий урок - семинар)

Цель: 1. Обобщить знания учащихся по данной теме с учетом прикладной направленности (в физике, трудового обучения);

2. Умение работать в группах и принимать участие в выступлениях

Оборудование: 2 линейки с делениями в 0,1см и 1см, термометр, весы, раздаточный материал (лист, копирка, карточки)
Вступительное слово и представление участников семинара (учитель)

Рассмотрим один из важных вопросов – приближенные вычисления. Несколько слов о его важности.

При решении практических задач часто приходится иметь дело с приближенными значениями различных величин.

Напомню, в каких случаях получаются приближенные значения:


  1. при подсчете большого количества предметов;

  2. при измерениях с помощью приборов различных величин (длины, массы, температуры);

  3. при округлении чисел.
Обсудим вопрос: «Когда качество измерения, вычисления будет выше ».

Участниками семинара сегодня будут 3 группы: математики, физики и представители производства (практики).

(Представляют группы «старшие», называют свою фамилию).

Оценивать работу семинара будут гости и компетентное жюри от общественности, где есть «математики», «физики» и «практики».

Оцениваться будет работа групп и отдельных участников баллами.
План работы (на доске)

1. Выступления

2. Самостоятельная работа

3. Викторина

4. Итоги
. Выступления.


  1. Мерой оценки отклонения приближенного значения от точного
служат абсолютная и относительная погрешности. Рассмотрим их определения с точки зрения прикладной направленности.
2
Абсолютная погрешность показывает на сколько

приближенное значение отличается от точного, т.е. точность приближения.

Относительная погрешность оценивает качество измерения и

выражается в процентах.

Если х ≈ α, где х – точное значение, а α – приближенное, то абсолютная погрешность будет: │х – α │, а относительная: │х – α │∕ │α│%


Примеры:

1 . Найдем абсолютную и относительную погрешности приближенного значения, полученного в результате округления числа 0,437 до десятых.

Абсолютная погрешность: │0,437 – 0,4 │= │0,037│= 0,037

Относительная погрешность: 0,037: │0,4│= 0,037: 0,4 = 0,0925 = 9,25%


  1. Найдем по графику функции у = х 2 приближенное значение
функции при х = 1,6

Если х = 1,6, то у ≈ 2,5

Найдем по формуле у = х 2 точное значение у: у = 1,6 2 = 2,56;

Абсолютная погрешность: │2,56 – 2,5 │= │0,06│= 0,06;

Относительная погрешность: 0,06: │2,5│= 0,06: 2,5 = 0,024 = 2,4%

Если сравнить два результата относительной погрешности 9,25% и

2,4%, то во втором случае качество вычисления будет выше, результат будет точнее.
Отчего зависит точность приближенного значения?

Она зависит от многих причин. Если приближенное значение получено при измерении, то его точность зависит от прибора, с помощью которого выполнялось измерение. Никакое измерение не может быть выполнено совершенно точно. Даже сами меры заключают в себе погрешность. Изготовить совершенно точные метровые линейки, килограммовую гирю, литровую кружку чрезвычайно трудно и закон допускает при изготовлении некоторую погрешность.

Например, при изготовлении метровой линейки допускается погрешность 1мм. Само измерение тоже вводит неточность, погрешность в гирях, весах. Например на линейке, которой мы пользуемся, нанесены деления через 1мм, т.е. 0,1см, значит точность измерения этой линейкой до 0,1 (≤ 0,1). На медицинском термометре деления через 0,1 0 , значит точность до 0,1 (≤ 0,1). На весах деления нанесены через 200г, значит точность до 200 (≤ 200).

Округляя десятичную дробь до десятых точность будет до 0,1 (≤ 0,1); до сотых – точность до 0,01 (≤ 0,01).

Точнейшие в мире измерения производятся в лабораториях Института


Всегда ли можно найти абсолютную и относительную погрешности?

Не всегда можно найти абсолютную погрешность, так как неизвестно

точное значение величины, а отсюда и относительную погрешность.

В этом случае принято считать что абсолютная погрешность не превосходит цены деления шкалы прибора. Т.е. если например цена деления линейки 1мм = 0,1см, то абсолютная погрешность будет с точностью до 0,1 (≤ 0,1) и будет определена только оценка относительной погрешности (т.е. ≤ какому числу %).

Часто приходится с этим встречаться в физике при демонстрации опытов, при выполнении лабораторных работ.

Задача. Найдем относительную погрешность при измерении длины листа тетради линейками: одна – с точностью до 0,1см (деления через 0,1см); вторая - с точностью до 1см (деления через 1см).

ℓ 1 = 20,4см ℓ 2 = 20,2см


0,! : 20,4 = 0,0049 = 0,49% 1: 20,2 = 0,0495 = 4,95%

Говорят, относительная погрешность в первом случае до 0,49%(т.е ≤ 0,49%), во втором случае до 4,95% (т.е. ≤ 4,95%).

В первом случае точность измерения выше. Мы говорим не о величине

относительной погрешности, а ее оценке.

На производстве при изготовлении деталей мы пользуемся

штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).

Абсолютная погрешность при измерении этим прибором составляет точность до 0,1мм. Найдем оценку относительной погрешности при измерении штангенциркулем:

d = 9,86см = 98,6мм


0,1: │98,6│= 0,1: 98,6 = 0,001 = 0,1%
Относительная погрешность с точностью до 0,1% (т.е. ≤ 0,1%).

Если сравнить с предыдущими двумя измерениями, то получается точность измерения выше.

Из трех практических примеров можно сделать вывод: что точных значений быть не может, производя измерения в обычных условиях.

Но чтобы точнее выполнить измерение нужно взять измерительный прибор цена деления которого как можно меньше.

4
. Самостоятельная работа по вариантам, с последующей проверкой (под копирку).

Вариант 1

Вариант 2



1. Построить график функции у = х 3

1. Построить график функции у = х 2


  1. если х = 1,5, то у ≈
если х = -0,5, то у ≈

б) у = 4 при х ≈



Пользуясь графиком закончить запись:

  1. если х = 2,5, то у ≈
если х = -1,5, то у ≈

б) у = 5 при х ≈



2. Округлить число 0,356 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения


2. Округлить число 0,188 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения

(Жюри проверяет самостоятельные работы)


. Викторина. (За каждый правильный ответ – 1 балл)

В каких примерах значения величин точные, а в каких приближенные?


Примеры:

1. В классе 36 учеников

2. В рабочем поселке 1000 жителей

3. Железнодорожный рельс имеет длину 50 м

4. Рабочий получил в кассе 10 тысяч рублей

5. В самолете ЯК – 40 120 пассажирских мест

6. Расстояние между Москвой и Санкт – Петербургом 650 км

7. В килограмме пшеницы содержится 30000 зерен

8.Расстояние от Земли до Солнца 1,5 ∙ 10 8 км

9. Один из школьников на вопрос о том, сколько учащихся учится в школе, ответил: «1000», а другой ответил «950». Чей ответ точнее, если в школе учится 986 учащихся?

10. Буханка хлеба весит 1 кг и стоит 2500 р.

11. Тетрадь в 12 листов стоит 600 р. и имеет толщину 3 мм


v. Подведение итогов, награждение

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.

Сейчас, когда человек владеет мощным арсеналом компьютерной техники (различные калькуляторы, компьютеры и т.п.), соблюдение правил приближенных вычислений особенно важно, чтобы не исказить достоверность результата.

Выполняя любые вычисления, следует помнить о точности результата, которую можно или нужно (если устанавливают) получить. Так, недопустимо производить вычисления с большей точностью, чем это задано данным физической задачи или требуется условиями експерименту1. Например, выполняя математические действия с числовыми значениями физических величин, которые имеют две достоверные (значимые) цифры, нельзя записывать результат расчетов с точностью, что выходит за пределы двух достоверных цифр, даже если в итоге имеем их больше.

Значение физических величин надо записывать, отмечая лишь знаки достоверного результата. Например, если числовое значение величины 39 600 имеет три достоверных знаки (абсолютная погрешность результата равен 100), то результат надо записать в виде 3,96 104 или 0,396 105. В подсчете достоверных цифр не учитываются нули слева от числа.

Чтобы результат вычислений был корректным, его надо округлить, оставляя лишь истинное значение величины. Если числовое значение величины содержит лишние (недостоверные) цифры, которые преобладают заданную точность, то последняя цифра, хранящейся увеличивается на 1 при условии, что избыток (лишние цифры) равна или больше половины значения следующего разряда числа.

В разных числовых значениях нуль может быть как достоверной, так и недостоверной цифрой. Так, в примере б) он является недостоверной цифрой, а в г) - достоверной, значимой. В физике, если хотят подчеркнуть достоверность разряда числового значения физической величины, в стандартном ее выражении указывают «0». Например, запись значения массы 2,10 10-3 кг указывает на три достоверные цифры результата и соответствующую точность измерения, а значение 2,1 10-3 кг только две достоверные цифры.

Следует помнить, что результат действий с числовыми значениями физических величин является приближенным результатом, который учитывает точность расчета или погрешность измерений. Поэтому при приближенных вычислений следует руководствоваться следующими правилами подсчета достоверных цифр:

1. При выполнении арифметических действий с числовыми значениями физических величин в их результате следует брать столько достоверных знаков, сколько их имеет числовое значение с наименьшим количеством достоверных знаков.

2. Во всех промежуточных подсчетах следует сохранять на одну цифру больше, чем их имеет числовое значение с наименьшим количеством достоверных знаков. В конечном итоге эта «дополнительная» цифра отбрасывается путем округления.

3. Если отдельные данные имеют более достоверных знаков, чем другие, их значения предварительно следует округлить (можно сохранить одну «избыточную» цифру) и после этого выполнять действия.