Влияние легирующих элементов на сталь – как делают идеальные сплавы? Легированная сталь — виды, характеристика, легированный лом

Для изготовления некоторых инструментов и ножей применяются специальные стали с добавлением легирующих добавок. Легирование стали осуществляется на металлургических производствах. При этом некоторые добавки позволяют не только улучшить характеристики стали, но и существенно упростить процесс плавки. Технологический процесс легирования довольно сложен, требует особой точности и поэтому практически невозможен в домашних условиях.

1 Описание процесса, цели

Нужно различать легирование стали, которая применяется для изготовления инструментов, и той, которая применяется для изготовления полупроводников. Так, в первом случае требуется повышение именно механических характеристик, а во втором случае требуется повышение токопроводящих свойств. Для этого применяются различные легирующие добавки, а также существенно отличается технологический процесс. Для того, чтобы иметь понятие о процессах, в данном материале будут вкратце рассмотрены основы легирования металлов для различных технических нужд.

Под легированием понимают добавление в состав металла различных примесей (добавок), которые изменяют характеристики и свойства металла. При этом процессы легирования разделяют на:

  1. Металлургическое легирование (по-другому - объемное).
  2. Поверхностное. Оно может быть выполнено несколькими способами: диффузией, ионным "обстрелом" и т.д.

В зависимости от того, для какой отрасли производят легирование стали, могут применяться различные технологии. Так, на металлургических производствах для легирования стали в расплавленный металл в качестве добавки применяется металл для легирования.

Легирование хромом, молибденом, никелем, ниобием (ниобий применяется редко) и т.д. Такие добавки позволяют существенно улучшить физико-химические свойства материала. Чтобы стальная заготовка обладала определенными свойствами (например, сопротивляемость коррозии, увеличение твердости и уменьшение износа), применяется поверхностное легирование. Технологический процесс легирования может производиться на различных этапах плавки для получения различных характеристик готового проката.

Поверхностное легирование часто применяют для изготовления стекол и керамических изделий. Это гораздо лучше, чем напыление, потому что происходит диффузия легирующей добавки и основного материала.

Главной целью легирования полупроводников является изменение проводимости, а также концентрации носителей в заданном количестве материала, при этом получая необходимые свойства (например, плавность pn-перехода). Для этих целей наиболее часто применяются добавки фосфора или мышьяка, иногда добавляют бор.

На данный момент существует несколько технологических способов легирования. Подробнее о них рассказано в следующем разделе.

2 Различные способы

Первый способ - ионное легирование (ионная имплантация) Такой способ позволит осуществлять контроль приборов с максимальной точностью. Эта технология применяется в основном для легирования полупроводников. Ионное легирование условно можно разделить на 2 этапа: загонка легирующих атомов в материал и активация загнанной в материал добавки. Проконтролировать процесс можно дозировкой (кол-вом добавки), энергей (от нее зависит глубина вхождения добавки), температурой (от нее зависит распределение добавки в материале), а также временем протекания процесса.

Следующим идет нейтронно-трансмутационный процесс легирования. Он тоже применяется для легирования полупроводников. Принципы технологического процесса следующие: добавки не вводятся, а "мутируют" из исходного материала при протекании ядерных реакций, которые вызываются при облучении материала нейтронами. В результате выходит монокристаллический материал, в котором атомы распределены равномерно. Подобный способ впервые был применен на территории СССР в 1980 году. Отечественными учеными была доказана возможность легирования силиция в больших количествах на энергоблоках АЭС, при этом не снижалась выработка электроэнергии и не ухудшались параметры безопасности. С 1988 по 2004 года технология была внедрена почти на всех АЭС России и усовершенствована, что позволило увеличить диаметр слитков Si до 85 мм. На данный момент Россия лидирует в этой технологии.

Другим способом легирования полупроводников является термодиффузионный способ. Он условно разделяется на несколько этапов: осаждение добавки, отжиг (при котором происходит загонка добавки в материал), удаление добавки.

Электроискровое легирование происходит при обработке готовых изделий из металла при использовании дуговых разрядов, при которых происходит перенос добавки с электрода на поверхность изделия. Часто применяют для форм и других изделий, которые используются в цветной и черной металлургии (в процессе разливки), поскольку обработанные детали и конструкции устойчивы к высокой температуре. Электроискровое легирование применяется только для специальных изделий и механизмов.

А вот в металлургии специальное легирование начало использоваться не так давно - примерно с начала 20 века. Основными причинами этого являются технологические сложности, связанные с процессом и с тем, что частично происходило природное обогащение компонентами (так, используемое метеоритное железо имело в своем составе никель, а на рудниках - свои примеси серы, кремния и т.д.). Некоторые месторождения (например, на юге Японии) имели в составе руды и молибден, поэтому японское оружие считалось очень надежным и прочным. В Европе уделили особое внимание процессу легирования во второй половине 19 века, первый лабораторный образец легированной стали был получен в 1858 году, первая пробная партия получена в 1871-м, однако технологически не подготовленное оборудование не позволяло быстро внедрить эту технологию. Поэтому массово легировать сталь стали только к 1890-м годам.

Отдельно стоит рассказать о технологии взрывного насыщения. Взрывное легирование используется при насыщении углеродистой стали медью. Это один из подвидов ионного способа, основное назначение - защита металлических изделий от коррозии.

3 На что влияют добавки

Первое, что следует выделить - наиболее часто применяемые добавки к стали. Таковыми являются: хром, никель, марганец, молибден, титан, ванадий. Медь легируют кадмием, что существенно увеличивает ее износостойкость. Установка небольшого количества присадок кадмия позволяет повысить прочность, гибкость и износостойкость проводов и кабелей. В титан добавляют молибден, что позволяет существенно повысить температурный диапазон эксплуатации. При этом некоторые металлы могут легировать сразу несколькими добавками.

Легирующие добавки для стали вводят для повышения именно механических характеристик.

4 Расшифровка наименований

Часто возникает необходимость узнать состав металла. Маркировка материала осуществляется при помощи букв и цифр, согласно ГОСТу 4543-71. Первыми идут цифры, показывающие кол-во C в процентах (сотых), затем идут буквы, показывающие добавку. Возможные обозначения: Х - Cr, Н - Ni, К - Co, М - Mo, Т - Ti, В - W, А - N, Б - Nb, Д - Cu, Г - Mn, Р - B, Ю - Al, Ф - V, С - Si. В маркировке за буквой, обозначающей добавку, ставится цифровое обозначение, которое указывает кол-во добавки в %, при этом цифра может округляться согласно правилам округления (т.е. реальное содержание добавки 0,88% будет округлено до 1%). Если кол-во добавки около 1 %, то цифровое обозначение после добавки не ставится совсем. При этом необходимо обратить внимание, что важно расположение буквы в наименовании.

Так, обозначение, содержащее "А", находящееся не в конце наименования стали, является обозначением добавки N как легирующей добавки, в случае, когда она последняя в наименовании, обозначает сталь высокого качества.

Например, распишем сталь 65Х13Н2МА. Установка расшифровки такова: кол-во углерода - 0,65%, 13% хрома, 2% никеля, 1% молибдена, сталь высококачественная.

В заключении стоит отметить, что необходимо четко следить за соотношением компонентов в стали.

В строительстве, промышленности и некоторых направлениях сельского хозяйства можно наблюдать активное применение металлических изделий. Причем один и тот же металл в зависимости от сферы использования раскрывает разные технико-эксплуатационные свойства. Объяснить это можно процессами легирования. Технологической процедуры, в рамках которой базовая заготовка обретает новые качества или улучшается по имеющимся характеристикам. Этому способствуют активные элементы, легирующие свойства которых вызывают химические и физические процессы изменения металлической структуры.

Основные легирующие элементы

Большое, но неоднозначное значение в процессах легирования имеет углерод. С одной стороны, его концентрация в структуре металла порядка 1,2% способствует повышению прочности, твердости и уровня хладноломкости, а с другой - он же снижает теплопроводность и плотность материала. Но даже не это главное. Как и все элементы легирующие, его добавляют при выполнении технологической переработки под сильным температурным воздействием. Однако, далеко не все примеси и активные компоненты сохраняются в структуре после завершения операции. Как раз углерод может оставаться в металле и в зависимости от требуемых характеристик конечного изделия технологи принимают решение о доработке металла или сохранении его текущих качеств. То есть они варьируют уровень содержания углерода посредством специальной операции легирования.

Также в перечень основных элементов легирования можно внести кремний и марганец. Первый вносится в целевую структуру в минимальном проценте (не более 0,4%) и особого влияния на изменение качеств заготовки не оказывает. Тем не менее этот компонент, как и марганец имеет существенное значение как раскисляющее и связующее вещество. Эти свойства легирующих элементов обуславливают базовую целостность структуры, которая еще в процессе легирования делает возможным органичное восприятие других, уже активных элементов и примесей.

Вспомогательные легирующие элементы

В данную группу элементов обычно включают титан, молибден, бор, ванадий и т.д. Наиболее заметным представителем этого звена является молибден, который чаще используют в хромистых сталях. В частности, с его помощью повышается прокаливаемость металла, а также снижается порог хладоломкости. Полезно для строительных марок сталей и применение молибденовых компонентов. Это эффективные легированные элементы в стали, которые обеспечивают динамическую и статическую прочность металлов, устраняя при этом риски внутреннего окисления. Что касается титана, то его применяют нечасто и только для одной задачи - измельчения структурных зерен в хромомарганцевых сплавах. Целенаправленными можно назвать также добавки кальция и свинца. Их используют для металлических заготовок, которые в дальнейшем подвергаются операциям резки.

Классификации элементов легирования

Помимо весьма условного разделения легирующих элементов на основные и вспомогательные, также применяются и другие, более точные признаки различия. Например, по механике воздействия на характеристики сплавов и сталей элементы делятся на три категории:

  • Оказывающие влияние с образованием карбидов.
  • С полиморфными превращениями.
  • С формированием интерметаллических соединений.

Важно учитывать, что в каждом из трех случаев влияние легирующих элементов на свойства интерметаллидов также зависит от сторонних примесей. Например, значение может иметь концентрация того же углерода или железа. Также существует классификация уже элементов полиморфного превращения по характеру воздействия. В частности, выделяются элементы, которые допускают наличие в сплаве легированного феррита, а также их аналоги, способствующие стабилизации оптимального содержания аустенита независимо от температуры.

Влияние легирования на сплавы и стали

Можно выделить несколько направлений, по которым могут быть улучшены качественные характеристики стали. В первую очередь это физические качества, определяющие технический ресурс материала. Легирование в этой части позволяет увеличить прочность, пластичность, прокаливаемость и твердость. Другим направление положительного влияния от легирующих элементов является улучшение защитных свойств. В этом плане стоит выделить сопротивляемость ударам, красностойкость, жаропрочность и высокий порог коррозийного поражения. Для некоторых сфер применения металлы готовят и с учетом электрохимических качеств. В данном случае элементы легирующие могут использоваться для повышения электро- и теплопроводности, сопротивления окислению, магнитопроницаемости и т. д.

Особенности влияния вредных примесей

Типичными представителями вредных примесей являются фосфор и сера. Что касается фосфора, то он при условии соединения с железом способен формировать хрупкие зерна, которые сохраняются после легирования. В итоге полученный сплав утрачивает высокую степень плотности, а также наделяется хрупкостью. Впрочем, соединение с углеродом дает и положительную характеристику, улучшая процесс отделения стружки. Это качество облегчает процессы механической обработки. Сера, в свою очередь, является еще более опасным веществом. Если влияние легирующих элементов на сталь в целом призвано улучшать сопротивляемость материала внешним воздействиям, то данная примесь нивелирует эту группу качеств. Например, ее высокая концентрация в структуре приводит к увеличению истираемости, снижению сопротивления усталости металла и минимизации коррозионной стойкости.

Технология выполнения легирования

Обычно легирование выполняется в рамках металлургического производства и представляет собой внесение в шихту или массу расплава дополнительных элементов, которые рассматривались выше. В результате термической обработки в структуре происходят химические и физические процессы соединения отдельных веществ, а также деформации. Таким образом, элементы легирующие позволяют улучшать качества металлургических изделий.

Заключение

Легирование является сложным технологическим процессом изменения характеристик металла. Сложность его главным образом заключается в первичном подборе оптимальных рецептов для достижения желаемого набора свойств заготовки. Как уже говорилось, влияние легирующих элементов разнопланово и неоднозначно. Один и тот же компонент активной добавки может, например, одновременно улучшать прочность металла и ухудшать его теплопроводность. Задача технологов заключается в разработке выигрышных комбинаций элементов, которые позволят сделать металлическую деталь или конструкцию наиболее приемлемой по своим качествам с точки зрения использования в конкретных целях.

Легированные стали - это углеродистые стали, содержащие менее 1% углерода, однако с добавками других металлов в количествах достаточных, чтобы существенио изменить свойства стали. Наиболее важные легирующие элементы

Алюминий Вплоть до 1% алюминия в легированных сталях позволяет им, в процессе азотирования образовать более твердый, износоустойчивый наружный слой.

Хром . Присутствие небольшого количества хрома стабилизирует структуру твердых карбидов. Это улучшает отклик стали на термообработку. Присутствие большого количества хрома улучшает коррозионную стойкость и термостойкость стали (например, нержавеющая сталь). К сожалению, присутствие хрома в стали приводит к росту зернистости (см. никель ).

Кобальт. Кобальт повышает критическую скорость закалки стали при tермобработке. Это позволяет инструментальным сталям работать при высоких температурах без разупрочнения (смягчающего отпуска). Кобальт - важный легирующий элемент в некоторых быстрорежущих (инструментальных) сталях

Медь. Вплоть до 0,5 % содержания меди улучшает коррозионную стойкость легированных сталей.

Свинец. Присутствие вплоть до 0,2 % свинца улучшает обрабатываемость сталей, однако за счет уменьшения прочности и вязкости.

Марганец. Этот легирующий элемент всегда присутствует в сталях до максимального содержания 1,5 % для нейтрализации вредного влияния примесей, остающихся после процессов её удаления. Он также способствует формированию устойчивых карбидов в подвергающихся закалке сталях. В больши количествах (вплоть до 12,5 %) марганец улучшает износоустойчивость сталей самопроизвольно формируя твердый наружный слой под воздействием истирания (самозакалка).

Молибден. Этот легирующий элемент поднимает сопротивление ползучести сталей при высоких температурах; стабилизирует в них карбиды; улучшает характеристики режущих инструментов при высоких температурах и уменьшает восприимчивость хромоникелевых сталей к «отпускной хрупкости».

Никель. Присутствие никеля в легированных сталях способствует увеличению прочности и улучшению структуры. Он также улучшает коррознонную стойкость стали. К сожалению, никель имеет склонность разупрочнять сталь графитизируя любые присутсвующие карбиды. Так как никель и хром обладают противоположными свойствами, их часто используют в сочетании (хромо-никелевые стали). Их преимущества дополняют друг друга, в то время как их нежелательные воздействия взаимно уравновешиваются.

Фосфор. Это остаточный элемент после процессов удаления. Он может стать причиной непрочности стали, и обычно стремятся уменьшить его присутствие до уровня ниже 0,05 %. Тем не менее фосфор способен улучшить обрабатываемость, действуя как внутренняя смазка. В больших количествах он также улучшает текучесть литых сталей и чугуна.

Кремний. Присутствие кремния вплоть до 0,3 % улучшает текучесть литых сталей и чугунов, причем в отличие от фосфора без снижения прочности. Вплоть до 1% кремния улучшает термостойкость сталей. К сожалению, как и никель, фосфор - сильный графитизирующий элемент, и его никогда не добавляют в больших количествах в высокоуглеродистые стали. Кремний используется для улучшения магнитных свойств магнитно-мягких материалов, тех, которые используются для пластин трансформаторов и штампованных листов для изготовления статоров и роторов электромотора.

Сера. Сера также является остаточным элементом после процессов удаления. Ее присутствие сильно ослабляет сталь, и используются все возможности для ее удаления; кроме того, марганец всегда присутствует в сталях, чтобы сводить к нулю влияние остаточной серы. Однако сера иногда преднамеренно добавляется в низкоуглеродистые стали для улучшения их обрабатываемости, в тех случаях, когда допустимо уменьшение прочности компоненты (сульфидированные легкообрабатываемые (автоматные) стали).

Вольфрам. Присутствие вольфрама в легированных сталях способствует формированию очень твердых карбидов и, так же как и присутствие кобальта, повышает критическую скорость закалки стали при термообработке. Это позволяет вольфрамовым сталям (быстрорежущим сталям) сохранять свою твердость при высоких температурах. Вольфрамовые сплавы составляют основу высокопроизводительных инструментов и штамповой стали.

Драгоценные металлы

Благородные металлы – это металлы, обладающие особой химической стойкостью, тягучестью и красивым внешним видом. Такие металлы называют благородными за природные свойства (не подверженные коррозии и окислению).

За какие свойства их считают драгоценными?

Прежде всего, за их красивый вид, высокую сопротивляемость коррозии и редкую встречаемость. Это - золото, серебро, платина и некоторые металлы платиновой группы. В ювелирном деле они широко используются из-за прекрасных механических свойств: пластичности, прочности, ковкости.

Согласно федеральному закону «О драгоценных металлах и камнях» выделяют восемь металлов относящихся к драгоценным:

· Серебро

· Платина

И металлы платиновой группы (платиноиды)

· Палладий

· Рутений

Впервые на золото обратили внимание в Древнем Египте примерно 6000 лет назад. Добывали мелкие и средние самородки в аравийских пустынях, из них и делались первые золотые украшения.

Для изготовления ювелирных украшений чаще всего используют многокомпонентные сплавы золота.

единственный металл, который имеет красивый желтый цвет.

Золото высокопластично, оно может быть проковано в листки толщиной до ~0,1 мкм (сусальное золото – тончайшие листы золота, которые используются в декоративных целях); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем - окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото хорошо полируется, имеет не высокую твердость. Из-за невысокой твердости и прочности золото используется в ювелирном производстве в виде сплавов с другими металлами и в очень редких случаях в чистом виде.

· Серебро

В Росси впервые добыча серебра произошла в 1974 году. Из-за наличия в воздухе серо-водорода имеет свойства темнеть. Серебро покрывается родием для повышения Износостойкости.

Серебро - металл белого цвета, почти не изменяющийся под воздействием кислорода при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается темным налетом сульфида серебра. Серебро хорошо полируется, имеет высокую отражательную способность, обладает высокой ковкостью и самой высокой из всех металлов тепло – электропроводностью.

· Платина

За внешнее сходство с серебром окрестили платина. (с испанского «серебришко».) Первыми применение для платины нашли фальшивомонетчики. В Испании очень быстро начали распространение монеты с примесью платины Такое золото считалось грязным (испанским золотом). По указанию короля в 19740 г. найденное золото необходимо было просматривать тщательно. Платину необходимо было отделять и затапливать в реках. 3 года платина была под запретом. Настоящее применение платина нашла в 1776 году. В витринах магазинов Парижа появились украшения из платины.

металл, имеющий бело-серую окраску сходную по цвету со сталью. Платина пластична, имеет высокую отражательную способность. Имеет низкую тепло – электропроводность. Твердость по шкале Мооса = 5. Тугоплавок, очень прочен, устойчив к коррозиям

а также металлы платиновой группы (платиноиды):

Они достаточно устойчивы на воздухе (не окисляются), обладают высокой сопротивляемостью агрессивной среде (кислотам, щелочам и т.д.), мягкостью, пластичностью.

· палладий

· родий

· иридий

· рутений

· осмий

Металлы платиновой группы достаточно устойчивы на воздухе (не окисляются), обладают высокой сопротивляемостью агрессивной среде (кислотам, щелочам и т.д.), мягкостью, пластичностью, тягучестью.

Благодаря перечисленным свойствам металлы данной группы широко используются в ювелирном деле.

В чистом виде драгметаллы не используются, так как они сравнительно мягкие, и обладают малой механической прочностью.

Для придания ювелирным изделиям большей твердости и износостойкости используются сплавы других металлов.

По сравнению с чистым металлом сплавы обладают лучшими механическими свойствами, более низкой температурой плавления и определенным оттенком.

Легирующие металлы и их характеристика

Сплавы – это тела, образовавшиеся в результате затвердения жидких систем, состоящие из двух или более компонентов.

При изготовлении ювелирных изделий различного назначения к драгоценным металлам добавляют в определенных соотношениях другие металлы, которые называют легирующими, или лигатурой (легирующими металлами могут быть как драгоценные так и не драгоценные металлы. Например: медь, кадмий, никель и т.д.)

Таким способом металлам придают необходимые для дальнейшего использования свойства.

Это может быть изменение цвета, понижение илиповышение пластичности, увеличение или уменьшение твердости, изменение температуры плавления. Полученные смеси называют сплавами драгоценных металлов.

Сплавы драгоценных металлов принято различать по составу . По составу сплавы называют в зависимости от основного компонента (сплавы золота, сплавы серебра и т.д.).

Цвета ювелирных изделий

Для любого человека купить ювелирные украшения из драгоценного металла – это не только возможность удачно вложить капитал, это еще и возможность приобрести высокохудожественные ювелирные украшения, обозначив принадлежность к социальной нише в обществе. Чем больше золотых ювелирных изделий у человека, тем выше его общественное положение, так как золото все еще остается предметом роскоши.

Природа подарила нам драгоценный металл лишь одного цвета – ярко желтого, а на сегодняшний день рынок предлагает нам целую палитру для золотых украшений.

Так почему мы различаем ювелирные изделия из желтого золота, белого и красного? Цвет золота в украшениях зависит от количества добавленных легирующих металлов.

Ювелирное золото представлено в виде различных сплавов следующих цветов:

· Желтое - наиболее часто используется в ювелирном деле в Европе. Так повелось, что Европа при изготовлении ювелирных изделий добавляла в сплавы драгоценных металлов больше серебра, что придавало сплаву желтый цвет.

· Красное - так повелось, что в России в сплавы металлов добавляли больше меди, поэтому золото приобретало красноватый оттенок. Таким образом красное золото стали называть русским.

· Белое - в основном типично для ювелирных изделий с бриллиантами, так как оно гармонично выглядит с камнем. получают посредством добавления в золото легирующих металлов. Если в золотом сплаве больше палладия цвет металла приобретает бело-стальной цвет. В случае добавления никеля сплав приобретает желтоватый цвет, а покрытие родим дает сплаву холодную голубизну

Легирование (от лат. ligo - связываю, соединяю), введение добавок в металлы, сплавы и полупроводники для придания им определенных физических, химических или механических свойств. Материалы, подвергнутые легированию, называют легированными. К ним относятся легированные стали и чугуны, легированные цветные металлыи сплавы, легированные полупроводники, Для легирования используют металлы, неметаллы (С, S, P, Si, В, N 2 и др.),ферросплавы (см. Железа сплавы) и лигатуры - вспомогательные сплавы, содержащие легирующий элемент. Например, основные легирующие элементы в сталях и чугунах - Сr, Ni, Mn, Si, Mo, W, V, Ti, Al, Nb, Co, Сu, в алюминия сплавах - Si, Cu, Mg, Ni, Cr, Co, Zn, в магния сплавах - Zn, Al, Mn, Si, Zr, Li, в меди сплавах -Zn, Sn, Pb, Al, Mn, Fe, Ni, Be, Si, P, в титана сплавах - Al, Mo, V, Mn, Сu, Si, Fe, Zn, Nb.

Легирование - качественное понятие. В каждом металле или сплаве из-за особенностей производственного процесса или исходного сырья присутствуют неизбежные примеси. Их не считают легирующими, так как они не вводились специально. Например, уральские железные руды содержат Сu, керченские - As, в сталях, полученных из этих руд, также имеются примеси соответственно Сu и As. Использование луженого, оцинкованного, хромированного и др. металлолома приводит к тому, что в получаемый металл попадают примеси Sn, Zn, Sb, Pb, Ni, Cr и др.

При легирование металлов и сплавов могут образовываться твердые растворы замещения, внедрения или вычитания, смеси двух и более фаз (напр., Ag в Fe), интерметаллиды, карбиды, нитриды, оксиды, сульфиды, бориды и других соединений легирующих элементов с основой сплава или между собой.

В результате легирование существенно меняются физико-химические характеристики исходного металла или сплава и, прежде всего, электронная структура. Легирующие элементы влияют на температуру плавления, область существования аллотропич. модификаций и кинетику фазовых превращений, характер дефектов кристаллической решетки, на формирование зерен и тонкой кристаллической структуры, на дислокационную структуру (затрудняется движение дислокаций), жаростойкость и коррозионную стойкость, электрические, магнитные, механические, технолегирование (например, свариваемость, шлифуемость, обрабатываемость резанием), диффузионные и многие другие свойства сплавов.

Легирование подразделяют на объемное и поверхностное. При объемном легировании легирующий элемент в среднем статистически распределяется в объеме металла. В результате поверхностного легирования легирующий элемент сосредоточивается на поверхности металла. Легирование сразу несколькими элементами, определенное содержание и соотношение которых дает возможность получить требуемый комплекс свойств, наз. комплексным легирование и соотв. сплавы - комплекснолегированными. Напр., в результате легирование аустенитной хромоникелевой стали вольфрамом ее жаропрочность возрастает в 2-3 раза, а при совместном использовании W, Ti и др. элементов - в 10 раз.

Условно различают понятия: легирование, микролегирование и модифицирование. При легировании в сплав вводят 0,2-0,5% по массе и более легирующего элемента, при микролегировании - чаще всего до 0,1 %, при модифицировании - меньше, чем при микролегировании, или столько же, однако задачи, решаемые микролегированием и модифицированием, разные. Микролегирование эффективно влияет на строение и энергетическое состояние границ зерен, при этом предполагается, что в сплаве будут реализованы два механизма упрочнения - благодаря легированию твердого раствора и в результате дисперсионного твердения. Модифицирование способствует в процессе кристаллизации измельчению структуры, изменению геом. формы, размеров и распределения неметаллических включений, изменению формы эвтектических выделений, в целом улучшая механические свойства. Для микролегирования используют элементы, обладающие заметной растворимостью в твердом состоянии (более 0,1 ат. %), для модифицирования обычно служат элементы с ничтожной растворимостью (}