Рациональные числа: определения, примеры. Целые и рациональные числа. Действительные числа

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

Множество рациональных чисел

Множество рациональных чисел обозначается и может быть записано таком в виде:

При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, и , (все дроби, которые можно получить друг из друга умножением или делением на одно и то же натуральное число, представляют одно и то же рациональное число). Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

Здесь - наибольший общий делитель чисел и .

Множество рациональных чисел является естественным обобщением множества целых чисел . Легко видеть, что если у рационального числа знаменатель , то является целым числом. Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел имеет счётную мощность (то есть все его элементы можно перенумеровать). Заметим, кстати, что ещё древние греки убедились в существовании чисел, не представимых в виде дроби (например, они доказали, что не существует рационального числа, квадрат которого равен 2).

Терминология

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар по отношению эквивалентности , если . При этом операции сложения и умножения определяются следующим образом:

Связанные определения

Правильные, неправильные и смешанные дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Правильные дроби представляют рациональные числа, по модулю меньшие единицы . Дробь, не являющаяся правильной, называется неправильной и представляет рациональное число, большее или равное единице по модулю.

Неправильную дробь можно представить в виде суммы целого числа и правильной дроби, называемой смешанной дробью . Например, . Подобная запись (с пропущенным знаком сложения), хотя и употребляется в элементарной арифметике , избегается в строгой математической литературе из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Высота дроби

Высота обыкновенной дроби - это сумма модуля числителя и знаменателя этой дроби. Высота рационального числа - это сумма модуля числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби равна . Высота же соответствующего рационального числа равна , так как дробь сокращается на .

Комментарий

Термин дробное число (дробь) иногда [уточнить ] используется как синоним к термину рациональное число , а иногда синоним любого нецелого числа. В последнем случае, дробные и рациональные числа являются разными вещами, так как тогда нецелые рациональные числа - всего лишь частный случай дробных.

Свойства

Основные свойства

Множество рациональных чисел удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  1. Упорядоченность . Для любых рациональных чисел и существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : «», «» или «». Это правило называется правилом упорядочения и формулируется следующим образом: два положительных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа и связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг неотрицательно, а - отрицательно, то .

    Суммирование дробей

  2. Операция сложения . правило суммирования суммой чисел и и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел и существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число . При этом само число называется произведением чисел и и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел , и если меньше и меньше , то меньше , а если равно и равно , то равно .
  5. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  6. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  7. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  8. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  9. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  10. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  11. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  12. Наличие обратных чисел . Любое ненулевое рациональное число имеет обратное рациональное число, умножение на которое даёт 1.
  13. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  14. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  15. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  16. Аксиома Архимеда . Каково бы ни было рациональное число , можно взять столько единиц, что их сумма превзойдёт .

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Счётность множества

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел. Примером такого построения может служить следующий простой алгоритм. Составляется бесконечная таблица обыкновенных дробей, на каждой -ой строке в каждом -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где - номер строки таблицы, в которой располагается ячейка, а - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби ставится в соответствие число 1, дроби - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Разумеется, существуют и другие способы занумеровать рациональные числа. Например, для этого можно воспользоваться такими структурами как дерево Калкина - Уилфа, дерево Штерна - Броко или ряд Фарея .

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

См. также

Целые числа
Рациональные числа
Вещественные числа Комплексные числа Кватернионы

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Рациональные числа – это числа вида , где
– целое число, а– натуральное. Множество рациональных чисел обозначают буквой. При этом выполняется соотношение
, так как любое целое число
можно представить в виде. Таким образом, можно сказать, что рациональные числа – это все целые числа, а также положительные и отрицательные обыкновенные дроби.

Десятичные дроби – это такие обыкновенные дроби, у которых знаменатель – единица с нулями, то есть 10; 100; 1000 и т.д. Десятичные дроби записывают без знаменателей. Сначала пишется целая часть числа, справа от нее ставится запятая; первая цифра после запятой означает число десятых, вторая – сотых, третья – тысячных и т.д. Цифры, стоящие после запятой, называются десятичными знаками.

Бесконечной называется десятичная дробь, у которой после запятой бесконечно много цифр.

Каждое рациональное число может быть представлено в виде конечной или бесконечной десятичной дроби. Это достигается делением числителя на знаменатель.

Бесконечную десятичную дробь называют периодической , если у нее, начиная с некоторого места, одна цифра или группа цифр повторяется, непосредственно следуя одна за другой. Повторяющуюся цифру или группу цифр называют периодом и записывают в скобках. Например, .

Верно и обратное утверждение: любую бесконечную десятичную периодическую дробь можно представить в виде обыкновенной дроби.

Перечислим некоторые сведения о периодических дробях.

1. Если период дроби начинается сразу после запятой, то дробь называется чисто-периодической , если не сразу после запятой – смешанно-периодической .

Например, 1,(58) – чисто-периодическая дробь, а 2,4(67) – смешанно-периодическая.

2. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители содержатся лишь числа 2 и 5, то запись числав виде десятичной дроби представляет собой конечную десятичную дробь; если в указанном разложении есть другие простые множители, то получится бесконечная десятичная периодическая дробь.

3. Если несократимая дробь такова, что в разложении ее знаменателя на простые множители не содержатся числа 2 и 5, то запись числав виде десятичной дроби представляет собой чисто-периодическую десятичную дробь; если в указанном разложении, наряду с другими простыми множителями, есть 2 или 5, то получится смешанно-периодическая десятичная дробь.

4. У периодической дроби период может быть любой длины, то есть содержать любое количество цифр.

1.3. Иррациональные числа

Иррациональным числом называется бесконечная десятичная непериодическая дробь.

Примерами иррациональных чисел служат корни из натуральных чисел, не являющихся квадратами натуральных чисел. Например,
,
. Иррациональными являются числа
;
. Множество иррациональных чисел обозначают буквой.

Пример 1.10. Доказать, что
– иррационально число.

Решение. Предположим, что
– рациональное число. Очевидно, оно не является целым, а поэтому
, где
и– несократимая дробь; значит, числа
ивзаимно простые. Так как
, то
, то есть
.

)- это числа с положительным или отрицательным знаком (целые и дробные) и ноль. Более точное понятие рациональных чисел, звучит так:

Рациональное число — число, которое представляется обычной дробью m/n , где числитель m — целые числа, а знаменатель n — натуральные числа, к примеру 2/3 .

Бесконечные непериодические дроби НЕ входят в множество рациональных чисел.

a/b , где a Z (a принадлежит целым числам), b N (b принадлежит натуральным числам).

Использование рациональных чисел в реальной жизни.

В реальной жизни множество рациональных чисел используется для счёта частей некоторых целых делимых объектов, например , тортов или других продуктов, которые разрезаются на части перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Свойства рациональных чисел.

Основные свойства рациональных чисел.

1. Упорядоченность a и b есть правило, которое позволяет однозначно идентифицировать между ними 1-но и только одно из 3-х отношений: «<», «>» либо «=». Это правило - правило упорядочения и формулируют его вот так:

  • 2 положительных числа a=m a /n a и b=m b /n b связаны тем же отношением, что и 2 целых числа m a n b и m b n a ;
  • 2 отрицательных числа a и b связаны одним отношением, что и 2 положительных числа |b| и |a| ;
  • когда a положительно, а b — отрицательно, то a>b .

a,b Q (aa>b a=b)

2. Операция сложения . Для всех рациональных чисел a и b есть правило суммирования , которое ставит им в соответствие определенное рациональное число c . При этом само число c - это сумма чисел a и b и ее обозначают как (a+b) суммирование .

Правило суммирования выглядит так:

m a /n a +m b /n b =(m a n b +m b n a) /(n a n b).

a,b Q !(a+b) Q

3. Операция умножения . Для всяких рациональных чисел a и b есть правило умножения , оно ставит им в соответствие определенное рациональное число c . Число c называют произведением чисел a и b и обозначают (a⋅b) , а процесс нахождения этого числа называют умножение .

Правило умножения выглядит так: m a n a m b n b =m a m b n a n b .

∀a,b∈Q ∃(a⋅b)∈Q

4. Транзитивность отношения порядка. Для любых трех рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c .

a,b,c Q (aba(a = b b = c a = c)

5. Коммутативность сложения . От перемены мест рациональных слагаемых сумма не изменяется.

a,b Q a+b=b+a

6. Ассоциативность сложения . Порядок сложения 3-х рациональных чисел не оказывает влияния на результат.

a,b,c Q (a+b)+c=a+(b+c)

7. Наличие нуля . Есть рациональное число 0, оно сохраняет всякое другое рациональное число при складывании.

0 Q a Q a+0=a

8. Наличие противоположных чисел . У любого рационального числа есть противоположное рациональное число, при их сложении получается 0.

a Q (−a) Q a+(−a)=0

9. Коммутативность умножения . От перемены мест рациональных множителей произведение не изменяется.

a,b Q a b=b a

10. Ассоциативность умножения . Порядок перемножения 3-х рациональных чисел не имеет влияния на итог.

a,b,c Q (a b) c=a (b c)

11. Наличие единицы . Есть рациональное число 1, оно сохраняет всякое другое рациональное число в процессе умножения.

1 Q a Q a 1=a

12. Наличие обратных чисел . Всякое рациональное число, отличное от нуля имеет обратное рациональное число, умножив на которое получим 1.

a Q a−1 Q a a−1=1

13. Дистрибутивность умножения относительно сложения . Операция умножения связана со сложением при помощи распределительного закона:

a,b,c Q (a+b) c=a c+b c

14. Связь отношения порядка с операцией сложения . К левой и правой частям рационального неравенства прибавляют одно и то же рациональное число.

a,b,c Q aa+c

15. Связь отношения порядка с операцией умножения . Левую и правую части рационального неравенства можно умножить на одинаковое неотрицательное рациональное число.

a,b,c Q c>0 aa cc

16. Аксиома Архимеда . Каким бы ни было рациональное число a , легко взять столько единиц, что их сумма будет больше a .

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби, отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

· Любое натуральное число n . Действительно, можно представить любоенатуральное число в виде обыкновенной дроби, например, 3=3/1 .

· Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .

· Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.

· Любое смешанное число. Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и.

· Любая конечная десятичная дробь или бесконечная периодическая дробь. Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 ,903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 ,−72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа.

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и. Таким образом, что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа−5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 ,−13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

· целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;

· каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;

· каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

К началу страницы

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q +) а + b= b + а;

("а, b, с Î Q +) (а + b)+ с = а + (b+ с)

Прежде чем сформулировать определение умножения положительных рациональных чисел, рассмотрим следующую задачу: известно, что длина отрезка Х выражается дробьюпри единице длины Е, а длина единичного отрезка измерена при помощи единицы Е 1 и выражается дробью. Как найти число, которым будет представлена длина отрезка X, если измерить ее при помощи единицы длины Е 1 ?

Так как Х=Е, то nХ=mЕ, а из того, что Е =Е 1 следует, что qЕ=рЕ 1 . Умножим первое полученное равенство на q, а второе – на m. Тогда (nq)Х = (mq)Е и (mq)Е= (mр)Е 1 , откуда (nq)X= (mр)Е 1. Это равенство показывает, что длина отрезка х при единице длины выражается дробью , азначит, =, т.е. умножение дробей связано с переходом от одной единицы длины к другой при изме­рении длины одного и того же отрезка.

Определение.Если положительное число а представлено дробью, а положительное рациональное число b дробью, то их произведением называется число а b , которое представляется дробью.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основываетсяна определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.

46. Как известно вычитание - это действие, противоположное сложению.

Если a и b - положительные числа , то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a
Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.
Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)
Пример.
6 - 8 = 6 + (- 8) = - 2
Пример.
0 - 2 = 0 + (- 2) = - 2
Стоит запомнить выражения ниже.
0 - a = - a
a - 0 = a
a - a = 0

Правила вычитания отрицательных чисел
Вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.
Разность может быть положительным числом, отрицательным числом или числом ноль.
Примеры вычитания отрицательных и положительных чисел.
- 3 - (+ 4) = - 3 + (- 4) = - 7
- 6 - (- 7) = - 6 + (+ 7) = 1
5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a
+ (- a) = - a
Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a
- (- a) = + a
Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0
Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n
Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.
Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел+ (+) = + + (-) = -
- (-) = + - (+) = -
Или выучить простое правило.
Минус на минус даёт плюс,
Плюс на минус даёт минус.

Правила деления отрицательных чисел.
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

· модуль делимого разделить на модуль делителя;

· перед результатом поставить знак «+».

Примеры деления чисел с разными знаками:

Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении
+ : (+) = + + : (-) = -
- : (-) = + - : (+) = -

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби
Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».
Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:
Частное от деления нуля на число, отличное от нуля, равно нулю.
0: a = 0, a ≠ 0
Делить на ноль НЕЛЬЗЯ!
Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
а: 1 = a
а: (- 1) = - a
а: a = 1 , где а - любое рациональное число.
Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
если a × b = с; a = с: b; b = с: a;
если a: b = с; a = с × b; b = a: c
Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.
Пример нахождения неизвестного.
x × (- 5) = 10
x = 10: (- 5)
x = - 2


Похожая информация.