Химический состав растительной клетки. Вода и ее биологическое значение Какое количество воды содержится в клетке

Урок рассчитан на 80–90 мин. Тема урока позволяет продемонстрировать ученикам взаимосвязь таких предметов, как биология, география, химия, физика. В скобках приведены варианты ответов на вопросы, которые мне хотелось бы получить от учащихся.

Цели: ознакомление учащихся с данными о содержании воды в клетках различных тканей и водном обмене у разных организмов, с современными представлениями о структуре и свойствах воды, ее биологическими функциями; совершенствование навыков логического мышления.

Оборудование: физическая карта Земли, пробирки, стаканы, капиллярные трубки; поваренная соль, этиловый спирт, сахароза, растительное масло, парафин, яичный белок, желудочный сок, лед; справочники по физике и химии.

Организационный момент

Учитель сообщает учащимся тему и цели урока и порядок его проведения.

Проверка знаний учащихся по теме «Элементный и химический (молекулярный) состав клетки». Трое учащихся работают у доски, остальные (по вариантам) работают по карточкам.

Работа у доски

1. На доске написан перечень элементов: F, Zn, N, Ca, J, Cl, Na, H, Mn, Cu, P, C, K, Fe, O, Mg, Co, из которых нужно выбрать органогенные (биогенные), макроэлементы, микроэлементы. Указать процентное содержание их в клетке.

(Ответ учащихся: а) органогенные: N, H, C, O; б) макроэлементы: Са, Сl, Na, Mn, P, K, Fe, Mg; в) микроэлементы: F, Zn, J, Cu, Co).

2. Дать характеристику органогенных элементов. Объяснить, почему в ходе развития жизни на Земле эти элементы оказались «удобными» для химии жизни.

3. Записать на доске сведения о химическом (молекулярном) составе клетки с указанием процентного содержания основных классов веществ.

Работа по карточкам

Письменно ответьте на вопрос.

Вариант 1. Как влияет недостаток какого-либо из необходимых элементов (органогенного, макроэлемента, микроэлемента) на жизнедеятельность клетки, организма? В чем это может проявиться? Приведите примеры.

Вариант 2. Какой вывод можно сделать из того, что клетки имеют сходный элементный и химический (молекулярный) состав?

Вариант 3. Какое научное значение имеют данные о сходстве и различиях элементного состава (качественного и количественного) живой и неживой природы?

Изучение нового материала

Содержание воды в клетках и организмах

1. Прочтите стихотворные строки Михаила Дудника и скажите, верны ли они с биологической точки зрения. (Стихотворение записано на доске.)

Говорят, что из восьмидесяти процентов воды состоит человек,
Из воды, добавлю, родных его рек,
Из воды, добавлю, – дождей, что его напоили,
Из воды, добавлю, из древней воды, родников.
Из которых его деды и прадеды пили...

(Ответ учащихся . Стихотворные строки верны, т.к. более чем на 2/3 человек состоит из воды.)

2. Глядя на физическую карту, вспомните, каково соотношение площадей суши и Мирового океана на нашей планете.

(Ответ учащихся . Мировой океан, т.е. вода, окружающая материки и острова, занимает около 71% земной поверхности.)

Комментарий учителя . Вода не только покрывает большую часть земной поверхности, но и составляет большую часть всех живых существ: микроорганизмов, растений, животных, человека.

3. Велико ли значение воды в жизни человека?

(Ответ учащихся . Человек пьет воду, моется ею, использует в различных производствах, в сельском хозяйстве. Сейчас многие страны мира испытывают недостаток пресной воды, для ее получения приходится строить специальные заводы, очистные сооружения.)

Комментарий учителя . Вода, такое привычное вещество, обладает совершенно удивительными свойствами. Только благодаря этим свойствам воды стала возможна жизнь на Земле. При поиске жизни на других планетах один из важнейших вопросов – есть ли там достаточное количество воды. Уникальное значение воды для биологических систем обусловлено даже просто количественным содержанием ее в живых организмах.

4. Приведите примеры содержания воды в клетках разных организмов, их тканях и органах, известные вам из курсов ботаники, зоологии, анатомии и физиологии человека.

(Ответ учащихся . Вода составляет 80% массы клетки в молодом организме человека или животного и 60% – в клетках старого. В клетках головного мозга ее 85%, а в клетках развивающегося зародыша – 90%. Если человек теряет 20% воды, то наступает смерть. Правда, не во всех клетках человека содержание воды столь велико. Скажем, в клетках эмали зубов ее только 10–15%. Много воды в клетках мякоти сочных плодов и листьях растений, но ее очень мало в клетках сухих семян или спорах растений и микроорганизмов, поэтому они могут храниться очень долго, пока опять не обводнятся в условиях, способствующих их прорастанию.)

5. Чем определяются различия в содержании воды в клетках?

(Ответ учащихся . Воды больше в тех клетках, в которых обмен веществ протекает более интенсивно.)

Поступление воды в организмы животных и растений

Какие вы знаете способы получения воды разными организмами?

(Ответ учащихся . Пути поступления воды в организм очень разнообразны:

а) через поверхность тела – у одноклеточных организмов, низших растений, личинок некоторых насекомых, лягушек, рыб и других водных организмов;
б) с пищей и питьем – у большинства животных;
в) есть животные, которые почти не пьют или пьют крайне мало. Это оказывается возможным за счет: метаболической воды, т.е. воды, образующейся в организме при окислении, главным образом, жиров (при окислении 1 г жира образуется 1,1 г воды); экономного расходования воды, которое у одних обеспечивается наличием водонепроницаемых покровов, у других – высокой концентрацией мочи (так, например, у верблюдов моча в 8 раз концентрированнее плазмы); запасов воды (например, у личинок);
г) растения поглощают воду из почвы с помощью корневых волосков;
д) необычные способы получения воды имеют: эпифиты – растения, поселяющиеся, главным образом на стволах, ветвях других деревьев – поглощают воду из воздуха; многие зонтичные растения задерживают влагу в чашевидных влагалищах листьев, откуда она постепенно всасывается через эпидермис.

Строение молекулы и свойства воды

Многочисленные биологические функции, выполняемые водой, обеспечиваются ее уникальными свойствами, а уникальность свойств воды определяется структурой ее молекулы.

1. Вспомните известные вам из курса химии особенности строения молекулы воды.

(Ответ учащихся . В молекуле воды (эмпирическая формула H 2 O) один атом кислорода ковалентно связан с двумя водородными атомами. Молекула имеет форму треугольника, в одной из вершин которого находится атом кислорода, а в двух других – по атому водорода.)

2. Каков характер ковалентной связи между атомом кислорода и атомами водорода?

(Ответ учащихся . Связь между атомом кислорода и атомами водорода полярная, т.к. кислород притягивает электроны сильнее, чем водород.)

Комментарий учителя . Действительно, атом кислорода в силу своей большей электроотрицательности притягивает электроны сильнее, чем атомы водорода. Следствием этого является полярность молекулы воды. В целом молекула воды электронейтральна, но электрический заряд внутри молекулы распределяется неравномерно, и в области атомов водорода преобладает положительный заряд, а в области, где расположен кислород, – отрицательный заряд (рис. 1). Поэтому такая молекула является электрическим диполем.

Рис. 1. Молекула воды, в которой один атом кислорода ковалентно связан с двумя атотмами водорода. Молекула полярна

Отрицательно заряженный атом кислорода одной молекулы воды притягивает положительно заряженные атомы водорода двух других молекул, поэтому молекулы воды оказываются связанными друг с другом водородными связями. С понятием водородной связи вы уже знакомы (рис. 2).

Рис. 2. Водородные связи (линии) между молекулами воды; атомы кислорода (белые кружки) несут частичные отрицательные заряды, поэтому они образуют водородные связи с атомами водорода (черные кружки) других молекул, несущими частичные положительные заряды

В жидкой воде эти слабые связи быстро образуются и так же быстро разрушаются при беспорядочных столкновениях молекул. Именно благодаря способности молекул воды связываться друг с другом при помощи водородных связей, вода обладает рядом свойств, имеющих важное значение для жизни.

Задания группам учащихся

Класс делится на пять групп, каждая из которых, используя заранее приготовленное оборудование, работает по инструктивной карточке, содержащей задание.

Задание 1-й группе

Вам предложен ряд веществ: поваренная соль, этиловый спирт, сахароза, растительное масло, парафин. Попытайтесь последовательно растворить эти вещества в воде. Какие из предложенных веществ растворяются в воде, а какие нет? Попытайтесь объяснить, почему одни вещества в воде растворяться могут, а другие не могут. С каким свойством воды вы при этом познакомились?

Задание 2-й группе

В пробирку с белыми хлопьями нерастворимого яичного белка, нагретую на водяной бане до 37 °С, добавьте желудочный сок. Что вы наблюдаете? Какая реакция произошла и благодаря какому ферменту желудочного сока? С каким свойством воды вы познакомились?

Задание 3-й группе

Опустите кусочки льда в стакан с водой. Что вы наблюдаете? Что вы можете сказать о плотности воды и льда? Конкретные сведения о плотности воды и льда можно получить из «Справочника по элементарной физике» (Енохович). С какими особенностями воды вы познакомились?

Задание 4-й группе

Вам известно, что вода закипает и переходит в парообразное состояние при температуре 100 °С. Используя «Справочник по элементарной физике», сравните температуру кипения воды с температурой кипения других жидкостей. Попытайтесь объяснить полученные результаты.

Задание 5-й группе

Попытайтесь налить воду в стакан «с верхом». Почему это возможно? В стакан с водой медленно опустите стеклянную трубку малого диаметра. Что вы наблюдаете? Объясните результаты опыта. С каким свойством воды вы познакомились?

Отчет 1-й группы

В воде из предложенных веществ растворяются: поваренная соль, этиловый спирт, сахароза (тростниковый сахар). Не растворяются: растительное масло и парафин. Из полученных результатов можно сделать вывод, что вещества с ионной химической связью (поваренная соль), а также неионные соединения (сахара, спирты), в молекулах которых, наверное, присутствуют заряженные (полярные) группы, в воде растворяются. Вода является одним из наиболее универсальных растворителей: практически все вещества растворяются в ней, хотя бы в следовых количествах.

Комментарий учителя . Если энергия притяжения между молекулами воды и молекулами какого-либо вещества больше, чем энергия притяжения между молекулами воды, то вещество растворяется. Растворимые в воде вещества называются гидрофильными (соли, щелочи, кислоты и др.). Неполярные (не несущие заряда) соединения в воде практически не растворяются. Их называют гидрофобными (жиры, жироподобные вещества, каучук и др.).

Отчет 2-й группы

Нерастворимые хлопья яичного белка под действием пепсина желудочного сока растворяются. Имеет место реакция ферментативного гидролиза (расщепления) белков на аминокислоты с присоединением молекулы воды при разрыве каждой пептидной связи. Подобные реакции протекают в желудочно-кишечном тракте человека и животных:

Таким образом, вода может вступать в химические реакции, т.е. является реагентом.

Свойства воды и ее роль в клетке:

На первом месте среди веществ клетки стоит вода. Она составляет около 80% массы клетки. Вода важна для живых организмов вдвойне, ибо она необходима не только как компонент клеток, но для многих и как среда обитания.

1. Вода определяет физические свойства клетки - ее объем, упругость.

2. Многие химические процессы протекают только в водном растворе.

3. Вода - хороший растворитель: многие вещества поступают в клетку из внешней среды в водном растворе, и в водном же растворе отработанные продукты выводятся из клетки.

4. Вода обладает высокой теплоемкостью и теплопроводностью.

5. Вода обладает уникальным свойством: при охлаждении ее от +4 до 0 градусов, она расширяется. Поэтому лед оказывается легче жидкой воды и остается на ее поверхности. Это очень важно для организмов, обитающих в водной среде.

6. Вода может быть хорошим смазочным материалом.

Биологическая роль воды определяется малыми размерами ее молекул, их полярностью и способностью соединяться друг с другом водородными связями.

Биологические функции воды:

транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

метаболическая. Вода является средой для всех биохимических реакций, донором электронов при фотосинтезе; она необходима для гидролиза макромолекул до их мономеров.

вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме.

За очень немногими исключениями (кость и эмаль зуба), вода является преобладающим компонентом клетки. Вода необходима для метаболизма (обмена) клетки, так как физиологические процессы происходят исключительно в водной среде. Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.

Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95% всей воды в клетке и используется главным образом как растворитель и как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на долю которой приходится всего 4% всей воды клетки, непрочно соединена с белками водородными связями.

Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты

Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке. Содержание воды в организме зависит от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе (90%) и с возрастом постепенно уменьшается. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Например, в сером веществе мозга воды до 80%, а в костях до 20%. Вода - основное средство перемещения веществ в организме (ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит «смазочным» материалом, необходимым везде, где есть трущиеся поверхности (например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.

1.3 Распределение воды в клетке

Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы -- 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях -- 87-89%, в корнях -- 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли -- наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Аппарат Гольджи

Аппарат Гольджи

Лизосомы - это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы...

Здоровье школьников: проблемы и пути решения

При занятии подростка спортом нельзя допускать перетренировки. Об утомлении после большой физической нагрузки свидетельствуют вялость, боль в мышцах. Родители должны контролировать время занятий спортом...

Информационная система клетки

Генетическая информация закодирована в ДНК. Генетический код был выяснен М. Ниренбергом и Х.Г. Корана, за что они были удостоены Нобелевской премии в 1968 году. Генетический код - система расположения нуклеотидов в молекулах нуклеиновых кислот...

Кодирование и реализация биологической информации в клетке, генетический код и его свойства

Посредником в передаче генетической информации (порядок нуклеотидов) от ДНК к белку выступает иРНК (информационная РНК)...

Мейобентос зарослей макрофитов прибрежной зоны Новороссийской бухты

Работ, описывающих закономерности пространственного размещения мейобентосных организмов, достаточно много - в последние десятилетия это одно из самых популярных направлений в исследованиях...

Мембранный потенциал

В 1890 году Вильгельм Оствальд, занимавшийся полупроницаемыми искусственными пленками предположил, что полупроницаемость может быть причиной не только осмоса, но и электрических явлений. Осмос возникает тогда...

Микробиология рыбы и рыбных продуктов

Микробиологическая оценка воды дается на основании определения микробного числа КМАФАнМ; коли - титра; коли - индекса; присутствия патогенных микроорганизмов. Первые два анализа проводятся постоянно...

Молекулярно-генетический уровень живых структур

То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи различных генов. Одних только признаков...

Мухи-сфероцериды (Diptera, Sphaeroceridae) природного заказника "Камышанова поляна"

На территории заказника «Камышанова Поляна» чётко выделяются следующие виды биотопов: лесные, луговые, различные околоводные, а также опушечные формации...

Объекты биотехнологии в пищевой промышленности

Обмен веществ, или метаболизм, -- лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме...

Понятие клетки

XVII век 1665 год -- английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками»...

Роль митохондрий в апоптозе

Физиология клеточного возбуждения

· Формирование клеточного возбуждения обусловлено именно транспортом ионов. Билипидный слой клеточной мембраны непроницаем для ионов (Na, K, Cl), для их транспорта в клетку и из клетки предназначены ионные каналы - специальные интегральные белки...

Химический состав клетки

Все живые организмы способны к обмену веществ с окружающей средой. В клетках непрерывно идут процессы биологического синтеза, или биосинтеза...

Жизнедеятельность клеток, тканей и органов растений обусловлена ​​наличием воды. Вода является конституционной веществом. Определяя структуру цитоплазмы клеток и ее органелл, благодаря полярности молекул она является растворителем органических и неорганических соединений, участвующих в обмене веществ, и выступает фоновым средой, в которой происходят все биохимические процессы. Легко проникая через оболочки и мембраны клеток, вода свободно циркулирует по всему растению, обеспечивая перенос веществ и тем способствуя единства метаболических процессов организма. Благодаря высокой прозрачности, вода не препятствует поглощению солнечной энергии хлорофиллом.

Состояние воды в клетках растений

Вода в клетке представлена ​​в нескольких формах, принципиально отличаются. Основными из них являются конституционное, сольватная, капиллярная и резервная вода.

Часть молекул воды, входящих в клетку, образует водородные связи с рядом радикалов молекул органических веществ. Особенно легко водородные связи образуют такие радикалы:

Эту форму воды принято называть конституционной . Она содержится клеткой с силой до 90 тыс. Барр.

Благодаря тому, что молекулы воды является диполями, они образуют с заряженными молекулами органических веществ цельные агрегаты. Такая вода, связанная с молекулами органических веществ цитоплазмы силами электрического притяжения, получила название сольватной . В зависимости от типа растительной клетки на долю сольватной воды приходится от 4 до 50% ее общего количества. Сольватная вода подобно конституционной не имеет подвижности и не является растворителем.

Значительная часть воды клетки является капиллярной , поскольку она размещается в полостях между макромолекулами. Сольватная и капиллярная вода удерживается клеткой с силой, которую называют матричным потенциалом. Он равен 15-150 бар.

Резервной называют воду, находящуюся внутри вакуолей. Содержание вакуолей собой раствор сахаров, солей и ряда других веществ. Поэтому резервная вода удерживается клеткой с силой, которая определяется величиной осмотического потенциала вакуолярного содержания.

Поглощение воды клетками растений

Поскольку для молекул воды в клетках нет активных переносчиков, то ее перемещение в клетки и из клеток, а также между соседними клетками осуществляется только по законам диффузии. Поэтому градиенты концентрации растворенных веществ оказываются основными двигателями для молекул воды.

Растительные клетки в зависимости от их возраста и состояния поглощают воду, используя последовательное включение трех механизмов: имбибиция, сольватации и осмоса.

Имбибиция . При прорастании семян начинает поглощать воду благодаря механизму имбибиция. При этом заполняются вакантные водородные связи органических веществ протопласта, и вода активно поступает из окружающей среды в клетку. По сравнению с другими силами, действующими в клетках, имбибицийни силы колоссальные. Для некоторых водородных связей они достигают величины 90 тыс. Барр. При этом семена могут набухать и прорастать в сравнительно сухих почвах. После заполнения всех вакантных водородных связей имбибиция останавливается и включается следующий механизм поглощения воды.

Сольватация . В процессе сольватации поглощения воды происходит путем построения гидратационных слоев вокруг молекул органических веществ протопласта. Общая обводненность клетки продолжает повышаться. Интенсивность сольватации существенно зависит от химического состава протопласта. Чем больше в клетке гидрофильных веществ, тем полнее используются силы сольватации. Гидрофильность уменьшается в ряду: белки -> углеводы -> жиры. Поэтому наибольшее количество воды на единицу веса путем сольватации поглощает белковое семена (горох, бобы, фасоль), промежуточную - крохмалисте (пшеница, рожь), а наименьшую - масличные (лен, подсолнечник).

Силы сольватации уступают по мощности силам имбибиция, но они все равно довольно значительные и достигают 100 бар. К концу процесса сольватации обводненность клетки настолько велика, что утворюется капиллярная влага, начинают возникать вакуоли. Однако с момента их образования сольватация прекращается, и дальнейшее поглощение воды возможно только за счет осмотического механизма.

Осмос . Осмотическое механизм поглощения воды действует только в клетках, которые имеют вакуоль. Направление движения воды при этом определяется соотношением осмотических потенциалов растворов, входящих в осмотическую систему.

Осмотическое потенциал клеточного сока, обозначается через Р, определяется по формуле:

Р = iRcT,

где Р - осмотическое потенциал клеточного сока

R - газовая постоянная, равная 0,0821;

Т - температура по шкале Кельвина;

i - изотонический коэффициент, указывающий на характер электролитической диссоциации растворенных веществ.

Изотонический коэффициент сам по себе равна

и = 1 + α (n + 1),

где α - степень электролитической диссоциации;

п - количество ионов, на которые диссоциирует молекула. Для неелектролитов п = 1.

Осмотическое потенциал почвенного раствора обычно обозначают греческой буквой π.

Молекулы воды всегда перемещаются из среды с меньшим осмотическим потенциалом в среду с большим осмотическим потенциалом. Итак, если клетка находится в почвенном (внешнем) растворе при Р> π, то вода поступает в клетки. Поступление воды в клетку прекращается при полном выравнивании осмотических потенциалов (вакуолярной сок входе поглощения воды разбавляется) или при достижения клеточной оболочкой пределы растяжимости.

Таким образом, клетки получают воду из окружающей среды только при одном условии: осмотическое потенциал клеточного сока должен быть выше, чем осмотическое потенциал окружающего раствора.

В случае если Р < π, имеет место отток воды из клетки во внешней раствор. В ходе водоотдачей объем протопласта постепенно зменьшуется, он отходит от оболочки, и в клетке возникают небольшие полости. Такое состояние называют Плазмолиз . Этапы плазмолизу показаны на рис. 3.18.

В случае если соотношение осмотических потенциалов соответствует условию Р = π, диффузии молекул воды вообще не происходит.

Большой фактический материал свидетельствует, что осмотическое потенциал клеточного сока растений колеблется в довольно широких пределах. В сельскохозяйственных растений в клетках корней он обычно лежит в амплитуде 5-10 бар, в клетках листьев может подниматься до 40 бар, а в клетках плодов - до 50 бар. У растений солончаков осмотическое потенциал клеточного сока достигает 100 бар.

Рис. 3.18.

А - клетка в состоянии тургора; Б - угловой; В - вогнутый; Г - выпуклый; Д - судорожный; Е - колпачковый. 1 - оболочка; 2 - вакуоль; 3 - цитоплазма; 4 - ядро; 5 - нити Гехта