Горит светильник. Светодиодная лампа светится при выключенном выключателе. Ремонт электронного балласта люминесцентных ламп

Общеизвестен факт, что светильники с лампами дневного света широко распространены не только на производствах и в организациях, но и в частных домах и квартирах. Наверняка у каждого второго человека в гараже или кладовке найдется старый, запылившийся подобный световой прибор, который уже не работает, а выкинуть его жалко. Тогда почему бы своими руками не отремонтировать эти лампы? Тем более, если есть возможность найти где-то старые и никому не нужные светильники, ремонт не будет стоить ни копейки, а как отремонтировать – сейчас разберемся.

Главное, что необходимо знать, прежде чем начать ремонт люминесцентных светильников – это принцип их работы.

Принцип работы устройства

Понять принцип работы люминесцентной лампы можно на примере схематического изображения, представленного ниже.

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубку лампы, включающую в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинку из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Итак, зная устройство лампы и схему светильника, можно приступать к его восстановлению.

Неисправности люминесцентной лампы и способы их устранения

Первым делом нужно проверить, нет ли неисправности в люминесцентной лампе, при помощи тестера или мультиметра. Необходимо помнить, что в схеме, к примеру, светильника Армстронг с ЭПРА на 4 лампы (4 х 18) при перегорании одной не будут работать все четыре. В приборах с одним стартером на 2 трубки должны быть исправны обе, ну а при подключении со достаточно одной рабочей, и светильник будет работать, даже если вторая неисправна.

После подачи питания, если светильник не горит, нужно проверить подачу напряжения на него. Сделать это можно с вводного клеммника.

Неисправности светильников с дросселем

Итак, если предыдущие шаги выполнены, а светильник по-прежнему не работает, нужно начинать проверку всех узлов схемы осветительного прибора, т. е. непосредственно приниматься за ремонт люминесцентных ламп.


Много чего может сказать визуальный осмотр, иногда невооруженным взглядом видны пробои, вмятины и другие причины того, почему лампа не загорается.

Как и в любом ремонте, сначала необходимо проверить элементарное. Имеет смысл поменять стартер на заведомо рабочий, после этого лампа должна загореться, и тогда эту неисправность люминесцентного светильника можно будет исключить. Однако не всегда под рукой может оказаться подходящий по параметрам стартер, а проверить тот, что есть, как-то нужно, вдруг причина не в нем?

Все достаточно просто. Потребуется обычный светильник с лампочкой накаливания. Питание на нее нужно подать так – в разрыв одного из проводов включить последовательно проверяемый стартер, второй же оставить целым. Если лампа загорелась или заморгала, то прибор работоспособен и проблема не в нем.

Если же и после этого светильник не загорится, тогда придется прозвонить на целостность все провода лампы, а также проверить напряжение на контактах патронов.

Неисправности светильников с ЭПРА

Здесь ремонт люминесцентного светильника сводится лишь к проверке ламп, целостности проводки и патронов-держателей. Если же они в порядке, придется просто заменить электронный пускорегулирующий аппарат.

Конечно, если человек знает, как проверить элементы ЭПРА на исправность, а также есть даже небольшие познания в радиоэлектронике, то починить электронный балласт больших трудов не составит.

Ремонт электронного балласта люминесцентных ламп


Чаще всего, если отказал электронный балласт (пускорегулирующий аппарат), то виновато в этом прогорание транзистора, что иногда можно увидеть и невооруженным глазом. Если же визуально определить это невозможно, придется выпаять транзисторы из схемы и прозвонить мультиметром.

Если они исправны, то сопротивление в них составит 400–700 Ом. Если один из транзисторов сгорел, возможно автоматическое сгорание и резистора в 30 Ом.

Также в схеме присутствует еще одно слабое место – низкоомный предохранитель в 2–5 Ом. Очень редко причина может быть в сгоревших элементах диодного моста. Это все возможные причины, после их устранения и будет закончен ремонт балласта, т. е. восстановление сгоревшего электронного пускорегулирующего аппарата.

Возможности запуска при сгоревшем оборудовании

В ремонте люминесцентных ламп есть и свои небольшие хитрости. К примеру, срочно понадобилось запустить подобный световой прибор, а стартер вышел из строя, и нет никакой возможности его заменить. Сам по себе этот элемент схемы служит для разогрева нитей накаливания в люминесцентной трубке.

Ну а если, к примеру, вышел из строя дроссель? Его в наше время и в магазинах не во всех найти можно.

Бездроссельное включение

Продлить работу сгоревшего светового прибора вполне возможно. Есть способ, при котором можно включить люминесцентную лампу дневного света без дросселя и стартера (схема подключения на рисунке). Конечно, этот способ подойдет не всем, нужно хотя бы немного разбираться в электротехнике.


Напряжение подается после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы (эту функцию по идее и выполняет дроссель). Конденсаторы С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – с номинальным напряжением в 1 000 В. По прошествии некоторого времени пары ртути, конечно, осядут в области одного из электродов, и свет от лампы станет намного менее ярким. Избавиться от этого можно будет, всего лишь изменив полярность, т. е. просто развернув реанимированную перегоревшую ЛЛ.

Бесстартерное включение

Существуют осветительные приборы, которые предусмотрены исключительно для работы без стартера. На таких лампах имеется маркировка RS. Если такую трубку установить в светильник, оборудованный прерывателем, лампа очень быстро сгорает. Происходит это по причине необходимости большего времени на разогрев спиралей таких люминесцентных трубок. Долговечность стартера небольшая, он часто перегорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого понадобится установка вторичных трансформаторных обмоток. Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание стартера (схема соединения ниже).

Таким образом без лишних затрат можно даже своими руками собрать люминесцентный светильник.


Подведение итогов

Стало быть, напрашивается вывод – ни к чему выбрасывать то, что вполне ремонтопригодно и жизнеспособно. Необходимо лишь хорошо подумать головой, а после поработать руками, и загоревшаяся лампа не только добавит уверенности в своих силах, но и хорошо отразится на финансовом состоянии. А в наше время сэкономленные на светильнике средства можно вложить в более необходимые вещи.

Ресурс работы всех видов ламп довольно большой. Если лампы в светильниках начинают часто перегорать - это говорит о каких-то проблемах в электросети или в осветительных приборах. Следует обязательно выяснить причины происходящего. Это не только поможет избавиться от частой покупки и замены ламп, но и предупредит возникновение других аварийных ситуаций, связанных с электроснабжением помещения.

Причины частого перегорания ламп

Вопрос, почему перегорают лампочки в люстре, следует решать, рассматривая весь комплекс возможных неисправностей электросети . Сначала следует исключить самые простые и очевидные:

Можно устанавливать в квартире или на даче стабилизатор напряжения. В старых квартирах проводка может служить причиной того, почему горит лампочка. Проблемы могут возникать не везде, а только в отдельной люстре. Требуется проверка проводки во всех комнатах и её ремонт. Неисправности в проводке могут привести к аварийным ситуациям.

Проверка правильности соединения проводов

Если все контакты находятся в хорошем состоянии и нет скачков напряжения, а проблема не устранена, надо проверить соединения проводов на наличие скруток. Если провода соединены методом скрутки, то со временем происходит окисление медных контактов, повышается сопротивление, возникают скачки напряжения. Это может быть причиной, почему взрываются лампочки в люстре при включении.

Помехи в сети возникают из-за появления вихревых токов. Скрутка будет играть роль катушки индуктивности. Скрутки проводников из разных металлов категорически запрещаются. При этом образуется гальваническая пара, и возникает сильный перегрев в местах соединения. Необходимо отказаться от скрутки проводов в пользу клеммного соединения.

Срок службы электроламп

Наиболее часто используются 4 типа осветительных приборов: лампы накаливания, светодиодные, люминесцентные и галогеновые. Срок их службы зависит от применяемой технологии. Но для ламп одного типа многое будет зависеть от режимов эксплуатации . Для основных типов он составляет:

Для увеличения сроков службы осветительных приборов можно применить устройства плавного пуска. Для этого существует много схем и готовых блоков.

Почему тускло горит светодиодный светильник? К сожалению, такой вопрос беспокоит многих пользователей. Купив светодиодный источник света, мы рассчитываем, что он обеспечит высокое качество освещения в течение нескольких лет. Практически все может оказаться иначе. Расскажем, по каким причинам LED-лампа может светить тускло.

Почему светодиодный светильник горит в полнакала – особенности конструкции и работы лампы

Конструкция светодиодной лампы состоит из цоколя, драйвера, радиатора, колбы и платы со светодиодами. Питается источник света через сеть переменного электрического тока, напряжение которой снижает драйвер. Радиатор отвечает за отвод тепла от LED-элементов – они нагреваются, когда лампа светит. Если светодиодная лампа используется взамен традиционной лампы накаливания или галогенной, требуется подбирать мощность и яркость, соответствующие предыдущим источникам света и светильнику.

Эти особенности работы LED-ламп позволяют понять, почему светодиодный светильник горит в полнакала . Стоить отметить, что частый запрос в интернете, включающий слово «в полнакала», некорректен. Правильным будет использование слова «вполнакала».

Почему светодиодный светильник еле горит – причины

Причин, по которым LED-лампа или светильник светят тускло, несколько:

  • Использование некачественных комплектующих. Недобросовестные производители могут ставить слабый радиатор (вызовет перегрев светодиодов и их выход из строя), либо использовать неподходящий ЧИП-элемент. Все это приводит к снижению яркости светового потока.
  • Естественная деградация светодиодов. Этот процесс происходит рано или поздно с любыми LED-лампами. Обычно срок деградации пишется на упаковке. Если срок появления тусклости совпадает с заявленными данными производителя, лампу пора менять.
  • Низкое напряжение сети. Редкий, но встречающийся фактор. Это можно проверить с помощью другой лампы. Если она светит в светильнике так же тускло, нужно вызвать электрика.
  • Неправильный выбор характеристик лампы. Внимательно изучите инструкцию к светильнику – в ней указывается, какой мощности и яркости должен быть источник света. Или же ориентируйтесь на показатели старой лампы.

Чтобы не задавать себе вопрос, почему светодиодный светильник еле горит , выбирайте продукцию только проверенных производителей – например, . Гарантия на товар позволит вам просто поменять лампу, если вам попалась продукция с заводским браком.

Если вы столкнулись с проблемой, что светодиодная лампа горит при выключенном выключателе, не удивляйтесь. Это говорит о том, что через светодиоды протекает ток. Яркость свечения зависит лишь от его силы.

С одной стороны у такого явления есть положительная сторона, если освещение находится в туалете или коридоре можно использовать в качестве ночной подсветки. А если в спальне? Возможен вариант, что свет не тлеет, а периодически мигает.

Причин такого явления может быть несколько:

  • Использование выключателей с подсветкой;
  • неисправности электропроводки;
  • особенности схемы питания.

Наиболее частой причиной свечения лампы после выключения являются выключатели с подсветкой.

Внутри такого выключателя находится светодиод с токоограничивающим резистором. Светодиодная лампа тускло светится при выключении света, поскольку даже при выключении основного контакта через них продолжает проходить напряжение.

Почему светодиодная лампа горит в полнакала, а не на полную мощность ? Благодаря ограничительному резистору сила тока, протекающая по электрической цепи, крайне незначительна и недостаточна для свечения электрической лампы накаливания либо розжига люминесцентных.

Потребляемая мощность светодиодов в десятки раз ниже аналогичных параметров обыкновенной лампы накаливания. Но даже незначительный ток, протекающий через диод подсветки, достаточен для слабого свечения светодиодов в светильнике.

Вариантов свечения может быть два. Либо светодиодная лампа горит после выключения непрерывно, значит, через светодиодную подсветку выключателя протекает достаточный ток, либо свет периодически вспыхивает. Так обычно происходит, если ток, протекающий по цепи, слишком незначительный для постоянного свечения, но он подзаряжает сглаживающий конденсатор в цепи схемы питания.

Когда на конденсаторе постепенно накапливается достаточное напряжение, происходит срабатывание микросхемы стабилизатора и лампа на мгновение вспыхивает. С таким миганием необходимо однозначно бороться, где бы лампа ни находилось.

В таком режиме работы ресурс компонентов платы питания значительно сократится, поскольку даже у микросхемы количество циклов срабатывания не бесконечное.

Способов устранения ситуации, когда светодиодная лампочка горит при выключенном выключателе несколько.

Наиболее простым является удаление из выключателя подсветки. Для этого разбираем корпус и откручиваем либо откусываем кусачками провод, идущий к резистору и светодиоду. Можно заменить выключатель на другой, но без такой полезной функции.

Другим вариантом может стать впайка шунтирующего резистора параллельно лампе. По параметрам он должен быть рассчитан на 2-4 Вт и иметь сопротивление не более 50 кОм. Тогда ток будет течь через него, а не через драйвер питания самой лампы.

Приобрести такой резистор можно в любом магазине радиотоваров. Установить резистор не представляет сложности. Достаточно снять плафон и зафиксировать ножки сопротивления в клемнике подсоединения сетевых проводов.

Если вы не особо дружны с электрикой и опасаетесь самостоятельно «влазить» в проводку, еще одним способом «борьбы» с выключателями с подсветкой может быть установка в люстру обычной лампы накаливания. Ее спираль при выключении и будет выполнять роль шунтирующего резистора. Но этот способ возможен лишь, если у люстры несколько патронов.

Неисправности с электропроводкой

Почему светодиодная лампа светится после выключения, даже если не используется кнопка с подсветкой?

Возможно, при монтаже электропроводки изначально была допущена погрешность и к выключателю вместо фазы подводится ноль, тогда после отключения выключателя проводка всё равно остаётся «под фазой».

Подобную сложившуюся ситуацию необходимо сразу ликвидировать, поскольку даже при плановой замене лампы можно получить чувствительный удар электрическим током. Любой минимальный контакт с «землёй» в данной ситуации будет вызывать слабое свечениесветодиодов.

Особенности схемы питания

Ради увеличения яркости свечения и минимизации пульсации освещения в схему драйвера питания могут устанавливать конденсаторы повышенной ёмкости. Даже при отключении питания в нем остаётся заряд, достаточный для свечения светодиодов, но его хватает буквально на несколько секунд.

О случаях, когда постоянно сгорает лампа в одном и том же светильнике. О больших токах пуска в лампах накаливания, о переходных процессах и вкратце о способах решения проблемы.

Щелчок выключателя: в туалете вспыхивает лампочка, на мгновение озарив скромный интерьер уборной, и все. Светила ярко, но недолго. Разобравшись в полумраке со своими естественными потребностями, вволакиваем табуретку, выкручиваем пострадавшую лампу. Ей, разумеется, уже никак не помочь.

Вкручиваем новую лампу, выбрасываем происшествие из головы. А на следующий день внезапно все повторяется: щелчок, вспышка и внезапная смерть лампы. Да что за беда-то такая! Может лампы неудачные, бракованные? Никак нет - в коридоре горит в точности такая же и безо всяких эксцессов.

Поминая всуе и Ильича, и Эдисона, запасаемся лампочками и скрепя сердце изводим весь свой запас на один-единственный светильник - все в том же туалете. А лампы все сгорают и сгорают. Причем именно в момент включения, то есть коммутации. Ну почему же, в конце-то концов?

Вообще-то, при коммутации страдает любое электрооборудование, а не только . Просто последним везет меньше всех. Электрическое сопротивление их нити накала очень зависит от температуры, а во время работы они прогреваются до двух с лишним тысяч градусов по Цельсию. При этом номинальный режим работы лампы соответствует прогретой нити, которая имеет большое сопротивление. При включении же холодной спирали электрический ток может в десять раз превышать номинальный из-за пониженного сопротивления. Выражаясь фигурально, после включения лампа получает настоящий электрический удар повышенной мощности.

Такие удары сами по себе неприятны и не способствуют длительной службе лампы и ее нити накаливания. Но ситуация может быть отягощена и еще одним фактором, из-за которого и получается, что именно в каком-то определенном светильнике лампы перегорают с завидным постоянством. Этот фактор - переходные процессы при коммутации.

Ведь ток через лампочку начинает идти сразу после подачи напряжения. И если лампа, к примеру, имеет мощность 60 ватт, то, считая нагрузку чисто активной, делаем вывод о том, что электрический ток должен составить примерно 0,27 ампера. Это в номинальном режиме. При включении холодной нити получаются уже все 2,7 ампера. Но как же величина тока изменится от нуля до 2,7 ампера? Скачком, сразу после включения выключателя, или плавно, через некоторое время?

Так вот, согласно теории переходных процессов, переход от полного отсутствия тока к 2,7 ампера никак не может быть мгновенным. В этом, пожалуй, и нет ничего удивительного - ведь в жизни практически нет мгновенных процессов, есть только процессы, занимающие очень малые промежутки времени с нашей, человеческой точки зрения. Вот и процесс изменения электрического тока в лампочке уборной комнаты занимает тысячные, может быть, сотые доли секунды.

Здесь уже, конечно, наши рассуждения немного отдают философией, но электрическому току тоже требуется некоторое время для того, чтобы разогнаться до скорости света. Это во-первых. А во-вторых, на длительность переходных процессов в любой цепи влияет наличие/отсутствие реактивной нагрузки. Так согласно одному из законов коммутации, физически не может измениться мгновенно. Поле, создаваемое индуктивностью, будет препятствовать изменению тока. И чем больше индуктивность, тем медленнее ток будет достигать своего установившегося, окончательного значения.

По второму закону коммутации, напряжение на емкостном элементе, то есть конденсаторе, не может резко упасть или возрасти. Конденсатору требуется время, чтобы отдать или накопить свой заряд. И чем больше его электроемкость, тем больше времени потребуется на изменения.

Эти законы действуют и в цепях переменного, и в цепях постоянного тока. Но кто-то скажет: «Какие еще катушки индуктивности и конденсаторы? Речь-то шла об обыкновенной лампочке - она-то тут при чем?» И действительно, можно было бы и согласиться: ведь реактивное сопротивление нити накаливания лампы составляет лишь доли процента от ее же активного сопротивления. Именно поэтому реактивным сопротивлением лампы накаливания пренебрегают при расчетах.

Но то, что им пренебрегают, не означает, что оно отсутствует. И вдобавок, параметры всей цепи, то есть всей домашней сети, нам досконально не могут быть известны. Лишь одно можно сказать точно: цепь замещения лампы накаливания будет содержать не только резистор, но и реактивный элемент - конденсатор или катушку индуктивности, а скорее всего - и то, и другое сразу.

Когда же в цепи есть реактивные элементы, величина электрического тока в переходных процессах определяется как сумма устоявшегося тока и некоей свободной составляющей. Свободная составляющая очень быстро уменьшается после коммутации, и максимальное ее значение приходится на первый момент после включения выключателя.

Величина и длительность воздействия тока свободной составляющей даже в цепях постоянного тока определяется методом решения сложных дифференциальных уравнений, которые учитывают соотношения всех параметров цепи замещения - активного сопротивления, индуктивности и емкости. На практике такие расчеты производят очень редко - настолько сложно определить все параметры с достаточной точностью.

А лампочка в туалете включена в цепь переменного тока, для которой немаловажную роль играют не только параметры цепи замещения, но и начальная фаза включения выключателя. Если выключатель был включен в момент, когда напряжение было на нулевой отметке, переходный процесс, возможно, никак не будет заметен, и лампа войдет в работу при самых благоприятных условиях.

Но если коммутация произойдет тогда, когда напряжение находится на пике своего значения (а для бытовой сети это примерно 310 вольт, между прочим), то лампочка может подвергнуться токовой нагрузке, превышающей установившееся значение в два раза! Конечно, с учетом того, что индуктивность и емкость схемы замещения будут малы, продолжительность такой перегрузки будет очень малой. Но ведь лампа итак подвергается токовому удару из-за того, что нить не прогрета.

Итак, с одной стороны, у нас есть холодная нить накала, сопротивление которой мало, а с другой стороны мы имеем цепь с неизвестными параметрами замещения. И включаем эту цепь неизвестно в какой момент времени по фазе тока. И если величина реактивных параметров цепи имеет сколько-нибудь существенное значение, а напряжение сети не ниже номинальных 220 вольт, то лампочке не поздоровится.

Пытаться найти настоящую причину, по которой в данном конкретном светильнике постоянно перегорают лампы, - дело малоперспективное. Ведь мы не можем определить все факторы и параметры цепи и внести нужные исправления. Поэтому проблему лучше решать радикально.

Первое возможное решение - это поменять тип светильника, или хотя бы лампы. Например, те же компактные люминесцентные лампы, известные как энергосберегающие, гораздо в меньшей степени подвержены вредному воздействию переходных процессов. И нити накаливания у них нет никакой - ни холодной, ни горячей. То же самое можно сказать и о светодиодных лампах.

Но если лампы накаливания вам дороги и без их желто-красного света вам «свет не мил», можно сделать следующее:

Установить электронный блок защиты ламп накаливания. Такой блок не только обеспечивает плавную подачу напряжения на лампу без бросков тока, но и стабилизирует напряжение, обеспечивая оптимальный режим работы.

Установить в цепь лампы дроссель или активное сопротивление, понизив тем самым напряжение и обеспечив лампе более мягкий режим работы;

Установить в цепь лампы обыкновенный диод, соответствующий по номинальному току. Диод «срежет» одну половину периода напряжения, и лампа будет гореть вдвое слабее. Для многих мест, например, для чулана, или для подъезда большего, бывает, и не надо.

Последние два способа решения проблемы сопряжены не только со снижением яркости лампы, но и с тем, что она будет работать с меньшим КПД. Но поскольку уж мы отдаем предпочтение лампам накаливания, этот факт не должен нас особо расстраивать.

Александр Молоков