Как построить замечательные точки треугольника. Ученический проект "Замечательные точки треугольника"

ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ

ТРЕУГОЛЬНИКА

Геометрия

8 класс

Сахарова Наталия Ивановна

МБОУ СОШ №28 г.Симферополя


  • Точка пересечения медиан треугольника
  • Точка пересечения биссектрис треугольника
  • Точка пересечения высот треугольника
  • Точка пересечения срединных перпендикуляров треугольника

Медиана

Медианой (BD) треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.


Медианы треугольника пересекаются в одной точке (центре тяжести треугольника) и делятся этой точкой в отношении 2: 1, считая от вершины.


БИССЕКТРИСА

Биссектрисой (АD) треугольника называется отрезок биссектрисы внутреннего угла треугольника. BAD = ∟ CAD.


Каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.

Обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе.


Все биссектрисы треугольника пересекаются в одной точке– центре вписанной в треугольник окружности.

Радиус окружности (ОМ) – перпендикуляр, опущенный из центра (т.О) на сторону треугольника


ВЫСОТА

Высотой (СD) треугольника называется отрезок перпендикуляра, опущенного из вершины треугольника на прямую, содержащую противолежащую сторону.


Высоты треугольника (или их продолжения) пересекаются в одной точке.


СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР

Серединным перпендикуляром (DF) называется прямая, перпендикулярная стороне треугольника и делящая её пополам.


Каждая точка серединного перпендикуляра (m) к отрезку равноудалена от концов этого отрезка.

Обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему.


Все серединные перпендикуляры сторон треугольника пересекаются в одной точке– центре описанной около треугольника окружности .

Радиусом описанной окружности является расстояние от центра окружности до любой вершины треугольника (ОА).


Стр. 177 №675 (рисунок)


Домашнее задание

Стр.173 § 3 определения и теоремы стр.177 № 675 (закончить)

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

Министерство общего и профессионального образования Свердловской области.

МОУО г. Екатеринбург.

Образовательное учреждение – МОУСОШ № 212 «Екатеринбургский культурологический лицей»

Образовательная область – математика.

Предмет – геометрия.

Замечательные точки треугольника

Референт : учащийся 8 класса

Селицкий Дмитрий Константинович.

Научный руководитель:

Рабканов Сергей Петрович.

Екатеринбург, 2001

Введение 3

Описательная часть:

    Ортоцентр 4

    Ицентр 5

    Центр тяжести 7

    Центр описанной окружности 8

    Прямая Эйлера 9

Практическая часть:

    Ортоцентрический треугольник 10

    Заключение 11

    Список литературы 11

Введение.

Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии. Постоянно открываются его новые свойства. Чтобы рассказать обо всех известных свойствах треугольника, потребуется большое количество времени. Меня заинтересовали так называемые «Замечательные точки треугольника». Примером таких точек является точка пересечения биссектрис. Замечательно то, что если взять три произвольные точки пространства, построить из них треугольник и провести биссектрисы, то они (биссектрисы) пересекутся в одной точке! Казалось бы, это не возможно, потому что мы взяли произвольные точки, но это правило действует всегда. Подобными свойствами обладают и другие «замечательные точки»

После прочтения литературы по данной теме, я зафиксировал для себя определения и свойства пяти замечательных точек и треугольника. Но на этом моя работа не закончилась, мне захотелось самому исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательные свойства треугольника, и исследование ортоцентрического треугольника. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор литературы, с помощью преподавателя

    Изучение основных свойств замечательных точек и линий треугольника

    Обобщение этих свойства

    Составление и решение задачи, связанной с ортоцентрическим треугольником

Полученные результаты я изложил в данной научно-исследовательской работе. Все чертежи я выполнил с использованием компьютерной графики (векторный графический редактор CorelDRAW).

Ортоцентр. (Точка пересечения высот)

Докажем, что высоты пересекаются в одной точке. Проведём через вершины А , В и С треугольника АВС прямые, параллельные противоположным сторонам. Эти прямые образуют треугольник А 1 В 1 С 1 . высоты треугольника АВС являются серединными перпендикулярами к сторонам треугольника А 1 В 1 С 1 . следовательно, они пересекаются в одной точке – центре описанной окружности треугольника А 1 В 1 С 1 . Точка пересечения высот треугольника называется ортоцентром (H ).

Ицентр – центр вписанной окружности.

(Точка пересечения биссектрис)

Докажем, что биссектрисы углов треугольника АВС пересекаются в одной точке. Рассмотрим точку О пересечения биссектрис углов А и В . любые точки биссектрисы угла А равноудалена от прямых АВ и АС , а любая точка биссектрисы угла В равноудалена от прямых АВ и ВС , поэтому точка О равноудалена от прямых АС и ВС , т.е. она лежит на биссектрисе угла С . точка О равноудалена от прямых АВ , ВС и СА , значит, существует окружность с центром О , касающаяся этих прямых, причём точки касания лежат на самих сторонах, а не на их продолжениях. В самом деле, углы при вершинах А и В треугольника АОВ острые поэтому проекция точки О на прямую АВ лежит внутри отрезка АВ .

Для сторон ВС и СА доказательство аналогично.

Ицентр обладает тремя свойствами:

    Если продолжение биссектрисы угла С пересекает описанную окружность треугольника АВС в точке М , то МА =МВ =МО .

    Если АВ - основание равнобедренного треугольника АВС , то окружность, касающаяся сторон угла АСВ в точках А и В , проходит через точку О .

    Если прямая, проходящая через точку О параллельно стороне АВ , пересекает стороны ВС и СА в точках А 1 и В 1 , то А 1 В 1 =А 1 В +АВ 1 .

Центр тяжести. (Точка пересечения медиан)

Докажем, что медианы треугольника пересекаются в одной точке. Рассмотрим для этого точку М , в которой пересекаются медианы АА 1 и ВВ 1 . проведём в треугольникеВВ 1 С среднюю линию А 1 А 2 , параллельную ВВ 1 . тогда А 1 М:АМ =В 1 А 2 :АВ 1 =В 1 А 2 1 С =ВА 1 :ВС =1:2, т.е. точка пересечения медиан ВВ 1 и АА 1 делит медиану АА 1 в отношении 1:2. Аналогично точка пересечения медиан СС 1 и АА 1 делит медиану АА 1 в отношении 1:2. Следовательно, точка пересечения медиан АА 1 и ВВ 1 совпадает с точкой пересечения медиан АА 1 и СС 1 .

Если точку пересечения медиан треугольника соединить с вершинами, то треугольники разобьётся на три треугольника равной площади. В самом деле, достаточно доказать, что если Р – любая точка медианы АА 1 в треугольнике АВС , то площади треугольников АВР и АСР равны. Ведь медианы АА 1 и РА 1 в треугольниках АВС и РВС разрезают их на треугольники равной площади.

Справедливо и обратное утверждение: если для некоторой точки Р , лежащей внутри треугольника АВС , площади треугольников АВР , ВСР и САР равны, то Р – точка пересечения медиан.

У точки пересечения есть ещё одно свойство: если вырезать треугольник из какого-либо материала, провести на нём медианы, закрепить в точке пересечения медиан подвез и закрепить подвес на штативе, то модель (треугольник) будет находиться в состоянии равновесия, следовательно, точка пересечения есть ни что иное, как центр тяжести треугольника.

Центр описанной окружности.

Докажем, что существует точка, равноудалённая от вершин треугольника, или, иначе, что существует окружность, проходящая через три вершины треугольника. Геометрическим местом точек, равноудалённых от точек А и В , является перпендикуляр к отрезку АВ , проходящий через его середину (серединный перпендикуляр к отрезку АВ ). Рассмотрим точку О , в которой пересекаются серединные перпендикуляры к отрезкам АВ и ВС . Точка О равноудалена от точек А и В , а также от точек В и С . поэтому она равноудалена от точек А и С , т.е. она лежит и на серединном перпендикуляре к отрезку АС .

Центр О описанной окружности лежит внутри треугольника, только если этот треугольник остроугольный. Если же треугольник прямоугольный, то точка О совпадает с серединой гипотенузы, а если угол при вершине С тупой, то прямая АВ разделяет точки О и С .

В математике часто бывает так, что объекты, определённые совсем по-разному, оказываются совпадающими. Покажем это на примере.

Пусть А 1 , В 1 , С 1 – середины сторон ВС , СА и АВ. Можно доказать, что окружности, описанные около треугольников АВ 1 С , А 1 ВС 1 и А 1 В 1 С 1 пересекаются в одной точке, причём эта точка – центр описанной окружности треугольника АВС . Итак, у нас есть две, казалось бы, совсем разные точки: точка пересечения серединных перпендикуляров к сторонам треугольника АВС и точка пересечения описанных окружностей треугольников АВ 1 С 1 , А 1 ВС и А 1 В 1 С 1 . а оказывается, что эти две точки совпадают.

Прямая Эйлера.

Самым удивительным свойством замечательных точек треугольника является то, что некоторые из них связаны друг с другом определёнными соотношениями. Например, центр тяжести М , ортоцентр Н и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ:МН =1:2. Эта теорема была доказана в 1765 г. швейцарским учёным Леонардо Эйлером.

Ортоцентрический треугольник.

Ортоцентрический треугольник (ортотреугольник) – это треугольник (М N К ), вершинами которого служат основания высот данного треугольника (АВС ). Этот треугольник обладает многими интересными свойствами. Приведем одно из них.

Свойство.

Доказать:

Треугольники AKM , CMN и BKN подобны треугольнику АВС ;

Углы ортотреугольника MNK таковы: L KNM = π - 2 L A , L KMN = π – 2 L B , L MNK = π - - 2 L C .

Доказательство:

Имеем AB cos A , AK cos A . Следовательно, AM /AB = AK /AC .

Т.к. у треугольников ABC и AKM угол А – общий, то они подобны, откуда заключаем, что угол L AKM = L C . Поэтому L BKM = L C . Далее имеем L MKC = π/2 – L C , L NKC = π/2 – - - L C , т.е. СК – биссектриса угла MNK . Итак, L MNK = π – 2 L C . Аналогично доказываются остальные равенства.

Заключение.

В заключение данной научно-исследовательской работы можно сделать следующие выводы:

    Замечательными точками и линиями треугольника являются:

    ортоцентр треугольника - это точка пересечения его высот;

    ицентр треугольника – это точка пересечения биссектрис;

    центр тяжести треугольника - это точка пересечения его медиан;

    центр описанной окружности – это точка пересечения серединных перпендикуляров;

    прямая Эйлера – это прямая, на которой лежат центр тяжести, ортоцентр и центр описанной окружности.

    Ортоцентрический треугольник делит данный треугольник на три подобных данному.

Проделав данную работу, я узнал много нового о свойствах треугольника. Данная работа явилась актуальной для меня с точки зрения развития моих знаний в области математики. В дальнейшем я предполагаю развивать эту интереснейшую тему.

Список литературы.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Берже М. Геометрия в двух томах – М: Мир, 1984.

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

Содержание

Введение………………………………………………………………………………………3

Глава1.

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.4. Высоты в треугольнике

Заключение

Список использованной литературы

Буклет

Введение

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник - атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера".

    1. Треугольник

Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки - вершины треугольника, отрезки - стороны треугольника.

В А, В, С - вершины

АВ, ВС, СА - стороны

А С

С каждым треугольником связаны четыре точки:

    Точка пересечения медиан;

    Точка пересечения биссектрис;

    Точка пересечения высот.

    Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― , соединяющий вершину с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой называется биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника - , опущенный из вершины на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для треугольника), совпадать с его стороной (являться треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

    Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

    у остроугольного треугольника – внутри;

    у прямоугольного – на гипотенузе;

    у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку - это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника.

AC - высота, проведенная из вершины С к стороне AB.

AB - высота, проведенная из вершины B к стороне AC.

AK - высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А - ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота - та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK - высота, проведенная к стороне BC.

BF - высота, проведенная к продолжению стороны АС.

CD - высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H - ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.


Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.


Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

    Цель достигнута: исследовали треугольник и нашли его замечательные точки.

    Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

    Учебник . Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

    Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

    Портал Алые Паруса

    Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157