Повышение температуры кипения, понижение температуры замерзания растворов. Второй закон Рауля. Влияние низких температур на биологические препараты Температура замерзания некоторых биологических жидкостей меньше температуры

Кол лигативные свойства растворов

Коллигативные свойства растворов - это те свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения.

В этой статье будут кратко рассмотрены изменения термодинамических свойств растворов относительно свойств растворителя:

понижение давления пара,

повышение температуры кипения,

понижение температуры замерзания,

осмотическое давление.

Первый закон Рауля

Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p 0) называют давлением или упругостью насыщенного пара чистого растворителя.

Франсуа Мари Рауль

В 1886 (1887) году Ф. М. Рауль сформулировал закон:

Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:

p = p 0 · χ р-ль, где

p - давление пара над раствором, ПА;

p 0 - давление пара над чистым растворителем;

χ р-ль -- мольная доля растворителя.

Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:

Δp = i · p 0 · χ в-ва, где

Δp - собственно изменение давления по сравнению с чистым растворителем;

χ в-ва - мольная доля вещества в растворе.

Второй закон Рауля

Также Рауль экспериментально доказал, что повышение температуры кипения раствора по сравнению с температурой кипения растворителя, а равно и понижение температуры замерзания раствора по сравнению с аналогичным характеризующей величиной для растворителя прямо пропорциональна моляльности раствора, то есть,

ΔT кип/зам= K эб/кр · m в-ва, где

K эб/кр - соответственно эбулиоскопическая (от лат. ebullire - «кипеть» и др.-греч. σκοπέω - «наблюдаю») и криоскопическая (относится к замерзанию) константы, характерные для данного растворителя;

m в-ва - моляльность вещества в растворе.

Осмотическое давление

Рассмотрим ситуацию, при которой частично проницаемая мембрана (т. е., такая, через которую могут проходить лишь мелкие объекты, например, молекулы растворителя, но не крупные - например, молекулы растворённого вещества) разделяет чистый растворитель и раствор (или два раствора с разными концентрациями). Тогда молекулы растворителя находятся практически в равных физических условиях по обе стороны мембраны, однако в более насыщенном растворе некоего вещества их концентрация, разумеется, меньше, чем в более разбавленном (в котором меньше места в растворе занимают молекулы растворённого вещества). Следовательно, со стороны менее насыщенного раствора через мембрану диффундирует большее число молекул, чем с противоположной стороны. А это значит, что растворитель попросту переходит из менее насыщенного раствора в более насыщенный , разбавляя его (выравнивая концентрации обоих растворов) и создавая давление на мембрану. Процесс этот (он называется осмосом) можно прекратить, оказав определённое давление на более насыщенный раствор (например, при помощи поршня) -- это давление и называется осмотическим давлением.

Осмотическое давление разбавленных растворов

Растворенное вещество по своему поведению во многих отношениях похоже на газ. Так, растворенное вещество, как и газ, стремится равномерно распределиться по всему объему раствора. Если неокрашенный растворитель привести в соприкосновение с окрашенным раствором (окраска вещества для удобства наблюдения), то вы увидите, что оно (растворенное вещество) проникает в неокрашенную жидкость (растворитель). Происходит диффузия – переход молекул растворенного вещества через поверхность раздела в растворитель и одновременно молекул растворителя в раствор. Такая встречная, двухсторонняя диффузия растворенного вещества и растворителя продолжается до тех пор, пока система не придет в состояние равновесия или пока энтропия системы не станет максимальной.
Можно сделать диффузию односторонней, разделив некоторый раствор и растворитель полупроницаемой перегородкой (мембраной) , проницаемой для молекул растворителя и непроницаемой для молекул растворенного вещества.

Если сосуд 1 , закрытый внизу полупроницаемой перегородкой 2 и наполненный водным раствором какого-либо вещества, поместить в сосуд 3 с водой, то вода будет проходить из сосуда 3 в сосуд 1 (рис. 6.).

Рис. 6.Прибор для определения
осмотического давления:
1–сосуд с раствором;
2полупроницаемая перегородка;
3 – сосуд с растворителем

Явление самопроизвольного перехода растворителя через полупроницаемую перегородку в раствор называется осмосом . Через некоторое время объем раствора в сосуде 1 увеличится и его уровень поднимется выше уровня растворителя в сосуде 3 на высоту h .
В результате увеличения объема раствора в сосуде 1 возникает гидростатическое давление, называемое осмотическим давлением , которое количественно оценивается высотой h подъема жидкости в сосуде 1 .
Процесс перехода растворителя в раствор самопроизволен, но обратный процесс самопроизвольно осуществляться не может, и для разделения раствора на растворитель и растворенное вещество следует затратить работу. Если в сосуде 1 с раствором увеличить давление, то растворитель будет переходить в обратном направлении через мембрану 2 в сосуд 3 . Этот процесс называется обратным осмосом , его используют для опреснения морской воды.


Почему через полупроницаемую перегородку проходят молекулы воды и не проходят ионы натрия или калия, значительно меньшие по размерам?

Осмотическое давление зависит от концентрации растворенного вещества и температуры. Так, при увеличении концентрации с сахарозы в воде в два раза осмотическое давление возрастает примерно в два раза, при увеличении концентрации c в три раза осмотическое давление
возрастает почти во столько же и т. д. Это можно записать следующим образом: ~ с , где с – мольная (молярная) концентрация (для точных измерений пользуются моляльной концентрацией).

При повышении температуры на один градус осмотическое давление возрастает на 1/273 часть своего первоначального значения. При повышении температуры на 10 градусов осмотическое давление возрастает на 10/273 и т. д. При повышении температуры Т (в К) в два раза осмотическое давление возрастает также в 2 раза. Таким образом, выполняется зависимость: ~ Т.
Объединяя обе зависимости (от концентрации и температуры) и вводя коэффициент пропорциональности R , получаем: = RсТ.

Осмотическое давление идеальных растворов линейно зависит от температуры и молярной концентрации раствора С и может быть рассчитано по уравнению:

Это уравнение и есть т.н. принцип Вант-Гоффа :

осмотическое давление идеального раствора равно тому давлению, которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при той же температуре, занимало бы тот же объем, который занимает раствор.

Для нахождения численного значения R подставим в эту формулу значения осмотического давления , концентрации с и температуры Т для одного из опытов. Так, при концентрации сахарозы 0,01 моль/л и температуре 0 °С (273 К) осмотическое давление составило 22 700 Па, поэтому

R = /сТ = 22 700/(0,01 273) = 8315 Па л/(К моль).

Этот результат интересен тем, что он показывает удивительную взаимосвязь и взаимозависимость явлений природы. Мы нашли, что численное значение коэффициента пропорциональности R в выражении осмотического давления совпадает со значением универсальной газовой постоянной (8314 Па л/К моль).

Из этого следует, что осмотическое давление раствора, содержащего 1 моль сахарозы (или любого другого неэлектролита), равно 2 270 000 Па (22,4 атм), а осмотическое давление раствора, в котором на 22,4 л приходится 1 моль сахарозы, составит 101 325 Па (1 атм). Следовательно, при Т = 273 К и = 101 325 Па (нормальные условия) раствор, содержащий 1 моль сахарозы, должен занимать объем 22,4 л. Этот пример иллюстрирует аналогию между поведением вещества в растворенном и газообразном состояниях.

Осмотическое давление равно тому давлению, которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при данной температуре, занимало тот же объем, который занимает раствор (закон и уравнение Вант-Гоффа).

Осмос производит работу! На рис. 7 полупроницаемая перегородка 2 располагается в дне поршня 4 , над которым – растворитель 3 , под поршнем 4 находится раствор 1 . Растворитель, проходя через полупроницаемую перегородку 2 в раствор 1 , поднимает поршень с грузом 5 . Подбирая массу груза, которая уравновешивает осмотическое давление, можно непосредственно определить осмотическое давление раствора.

Растворы сахарозы С 12 Н 22 О 11 , глюкозы С 6 Н 12 О 6 , глицерина СН 2 ОНСНОНСН 2 ОН, этилового спирта С 2 Н 5 ОН, карбамида СО(NН 2) 2 , содержащие 1 моль вещества в 22,4 л раствора, имеют осмотическое давление 101 325 Па (1 атм) при нормальных условиях. Такие же растворы хлорида натрия или нитрата натрия имеют осмотическое давление в два раза больше. Аналогичные растворы хлорида кальция СаСl 2 , нитрата магния Mg(NO 3) 2 , сульфата натрия Na 2 SO 4 имеют осмотическое давление в три раза более высокое, а растворы хлорида алюминия AlCl3 или нитрата железа Fe(NO 3) 3 – в четыре раза более высокое.

Объяснение причин такого изменения осмотического давления в зависимости от состава растворенной соли.

Пользуясь осмотическим давлением, несложно определить мольную массу вещества в растворенном состоянии. Мольная масса равна числу граммов растворенного вещества, содержащихся в 22,4 л раствора при температуре 0 °С, когда осмотическое давление раствора равно 101 325 Па.

Пример . Определим мольную массу М глюкозы, если раствор, содержащий в 250 мл 9,04 г глюкозы, имеет осмотическое давление 4,56 10 5 Па при температуре 0 °С.

Решение

В 1 л раствора содержится глюкозы:

9,04 1000/250 = 36,16 г.

Определим число молей глюкозы:

36,16/M = моль.

Подставляя (значение концентрации) и в уравнение осмотического давления, получаем:

4,56 10 5 = 8314 273,15 36,16/М.

Откуда мольная масса глюкозы С 6 Н 12 О 6 равна 180 г/моль.

Механизм возникновения осмотического давления окончательно не выяснен. Некоторые исследователи считают, что аналогия между осмотическим и газовым давлениями случайна.

Осмос и осмотическое давление имеют огромное значение в биологических явлениях, т. к. оболочки клеток биологических тканей являются полупроницаемыми перегородками. Осмотическое давление клеточного сока растений изменяется от 2,0 10 5 Па (у болотных растений) до 4,5 10 6 Па (у степных). Вследствие осмоса вода и питательные растворы поднимаются из почвы по корням и далее по стволу растения на значительную высоту. Тканевые жидкости млекопитающих имеют осмотическое давление 6,7 10 5 –8,1 10 5 Па. Осмотическое давление крови млекопитающих близко к осмотическому давлению океанской воды.

Осмотическое давление внутри живых клеток обусловливает прочность и упругость тканей, и благодаря ему осуществляется солевой обмен живой ткани с окружающей средой.

Осмотическое давление разбавленного раствора (с < 0,01 моль/л) прямо пропорционально мольной концентрации растворенного вещества, т. е. пропорционально числу частиц, находящихся в данном объеме раствора. Свойства растворов, зависящие от числа частиц, называются коллигативными . К этим свойствам относятся понижение давления пара растворителя над раствором, повышение температуры кипения, понижение температуры замерзания. Все эти свойства пропорциональны числу растворенных частиц.

Осмос играет важнейшую роль в процессах жизнедеятельности животных и растений, поскольку клеточная плазматическая мембрана является полупроницаемой. Осмос обусловливает поднятие воды по стеблю растений, рост клетки и многие другие явления.

Рассмотрим роль осмоса в водном режиме растительной клетки. Осмотическое давление жидкости, контактирующей с клеткой, может быть больше, меньше либо равно осмотическому давлению внутриклеточной жидкости. Соответственно выделяют гипертонические, гипотонические и изотонические растворы.

Если клетка находится в контакте с гипертоническим раствором, вода выходит из неё путём осмоса через плазматическую мембрану. Протопласт (живое содержимое клетки) при этом уменьшается в объёме, сморщивается и в конце концов отстаёт от клеточной стенки. Этот процесс называют плазмолизом. Процесс плазмолиза обычно обратим.


Рис. 3.7 Влияние осмотического давления на растительную клетку

Если клетку поместить в чистую воду или гипотонический раствор, вода путём осмоса поступает в клетку; протопласт при этом увеличивается в объёме и оказывает давление на сравнительно жёсткую клеточную стенку. Этот процесс называется тургором. Тургорное давление препятствует дальнейшему поступлению воды в клетку. Именно тургорное давление поддерживает стебли растений в вертикальном положении, придаёт растениям прочность и устойчивость.

Изотонические растворы не оказывают влияния на водный режим клетки.

У животных клеток нет клеточной стенки, поэтому они более чувствительны к осмотическому давлению жидкости, в которой находятся.


Рис. 3.8 Влияние осмотического давления на эритроциты

Животные клетки имеют систему защиты, основанную на осморегуляции; организм животного стремится поддерживать осмотическое давление всех тканевых жидкостей на постоянном уровне. Например, осмотическое давление крови человека – 800 000 Н/м 2 . Такое же осмотическое давление имеет 0,9 %-ный раствор хлорида натрия. Физиологический раствор, изотоничный крови, широко применяется в медицине.

Рассмотрим роль осмоса в водном режиме растительной клетки. Осмотическое давление жидкости, контактирующей с клеткой, может быть больше, меньше либо равно осмотическому давлению внутриклеточной жидкости. Соответственно выделяют гипертонические, гипотонические и изотонические растворы.

Если клетка находится в контакте с гипертоническим раствором , вода выходит из неё путём осмоса через плазматическую мембрану. Протопласт (живое содержимое клетки) при этом уменьшается в объёме, сморщивается и в конце концов отстаёт от клеточной стенки. Этот процесс называют плазмолизом . Процесс плазмолиза обычно обратим.

Если клетку поместить в чистую воду или гипотонический раствор , вода путём осмоса поступает в клетку; протопласт при этом увеличивается в объёме и оказывает давление на сравнительно жёсткую клеточную стенку. Этот процесс называется тургором . Тургорное давление препятствует дальнейшему поступлению воды в клетку. Именно тургорное давление поддерживает стебли растений в вертикальном положении, придаёт растениям прочность и устойчивость.

Изотонические растворы не оказывают влияния на водный режим клетки.

У животных клеток нет клеточной стенки, поэтому они более чувствительны к осмотическому давлению жидкости, в которой находятся. Животные клетки имеют систему защиты, основанную на осморегуляции ; организм животного стремится поддерживать осмотическое давление всех тканевых жидкостей на постоянном уровне. Например, осмотическое давление крови человека – 800 000 Н/м 2 . Такое же осмотическое давление имеет 0,9 %-ный раствор хлорида натрия. Физиологический раствор, изотоничный крови, широко применяется в медицине.

Давление насыщенного пара разбавленных растворов

Одно из важнейших свойств жидкостей и растворов (и вообще всех веществ) – давление насыщенного пара вещества над поверхностью жидкости (или кристалла).

Давление насыщенного пара воды имеет огромное значение для жизни природы. Листья на деревьях высыхают, когда давление паров воды в воздухе становится ниже некоторого предела. Выстиранное белье на берегу моря почти не сохнет. И такое же белье на морозе высыхает быстрее, чем при обычной температуре. Здесь мы имеем дело с давлением пара воды.
Вы видели в музеях висящие на стенах психрометры – приборы для измерения влажности воздуха? Психрометр состоит из двух термометров – одного обычного, сухого, и второго, влажного, – с шариком, обернутым тканью, которая опущена в воду. Сухой термометр показывает температуру воздуха, а смоченный – температуру влажной ткани. Из показаний обоих термометров по специальной таблице (или графику) определяют давление водяного пара в воздухе, его влажность. Какой термометр, сухой или влажный, показывает более высокую температуру? Почему такое устройство позволяет судить о влажности воздуха?

Иногда для измерения влажности воздуха используют гигрометры – приборы, основанные на других принципах действия. Например, действие волосного гигрометра основано на зависимости длины человеческого обезжиренного волоса от содержания водяных паров, электролитического гигрометра – на зависимости сопротивления раствора электролита от влажности воздуха и т. д. Почему в музеях необходимо поддерживать постоянную влажность воздуха?

Давление пара над раствором отличается от давления пара над чистым веществом.

Давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем

Представим, что в равновесную систему жидкость А – пар введено некоторое вещество В. При образовании раствора мольная доля растворителя X А становится меньше единицы; равновесие в соответствии с смещается в сторону конденсации вещества А, т.е. в сторону уменьшения давления насыщенного пара Р А. Очевидно, что, чем меньше мольная доля компонента А в растворе, тем меньше парциальное давление его насыщенных паров над раствором.

Для некоторых растворов выполняется следующая закономерность, называемая первым законом Рауля :

Поскольку сумма мольных долей всех компонентов раствора равна единице, для бинарного раствора, состоящего из компонентов А и В легко получить следующее соотношение, также являющееся формулировкой первого закона Рауля:

Относительное понижение давления пара растворителя над раствором равно мольной доле растворенного вещества и не зависит от природы растворенного вещества.

Растворы, для которых выполняется закон Рауля, называют идеальными растворами . Идеальными при любых концентрациях являются растворы, компоненты которых близки по физическим и химическим свойствам (оптические изомеры, гомологи и т.п.) и образование которых не сопровождается объёмными и тепловыми эффектами. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором. Растворы, компоненты которых существенно различаются по физическим и химическим свойствам, подчиняются закону Рауля лишь в области бесконечно малых концентраций.

Давление пара идеальных и реальных растворов

Если компоненты бинарного (состоящего из двух компонентов) раствора летучи, то пар над раствором будет содержать оба компонента (относительное содержание компонентов в парах будет, как правило, отличаться от содержания их в растворе – пар относительно богаче компонентом, температура кипения которого ниже). Рассмотрим бинарный раствор, состоящий из компонентов А и В, неограниченно растворимых друг в друге. Общее давление пара, согласно первому закону Рауля, равно

Таким образом, для идеальных бинарных растворов зависимость общего и парциального давления насыщенного пара от состава раствора, выраженного в мольных долях компонента В , является линейной при любых концентрациях (рис.9). К таким системам относятся, например, системы бензол – толуол, гексан – гептан, смеси изомерных углеводородов и др.

Рис. 9 Зависимость парциальных и общего давлений пара идеального раствора от концентрации

Для реальных растворов данные зависимости являются криволинейными. Если молекулы данного компонента взаимодействуют друг с другом сильнее, чем с молекулами другого компонента, то истинные парциальные давления паров над смесью будут больше, чем вычисленные по первому закону Рауля (положительные отклонения ). Если же однородные частицы взаимодействуют друг с другом слабее, чем разнородные, парциальные давления паров компонентов будут меньше вычисленных (отрицательные отклонения ). Реальные растворы с положительными отклонениями давления пара образуются из чистых компонентов с поглощением теплоты (ΔН раств > 0), растворы с отрицательными отклонениями образуются с выделением теплоты (ΔН раств < 0).


Рис. 10 Зависимость парциальных и общего давлений пара идеальных (штриховая линия) и реальных (сплошная линия) бинарных растворов от состава при положительных (слева) и отрицательных (справа) отклонениях от закона Рауля .

Температура кристаллизации разбавленных растворов

Раствор в отличие от чистой жидкости не отвердевает целиком при постоянной температуре; при некоторой температуре, называемой температурой начала кристаллизации, начинают выделяться кристаллы растворителя и по мере кристаллизации температура раствора понижается (поэтому под температурой замерзания раствора всегда понимают именно температуру начала кристаллизации). Замерзание растворов можно охарактеризовать величиной понижения температуры замерзания ΔТ зам, равной разности между температурой замерзания чистого растворителя T° зам и температурой начала кристаллизации раствора T зам:

Рассмотрим Р – T диаграмму состояния растворителя и растворов различной концентрации (рис. 11), на которой кривая ОF есть зависимость давления пара над твердым растворителем, а кривые ОА, ВС, DE – зависимости давления пара над чистым растворителем и растворами с возрастающими концентрациями соответственно. Кристаллы растворителя будут находиться в равновесии с раствором только тогда, когда давление насыщенного пара над кристаллами и над раствором одинаково. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, температура, отвечающая этому условию, всегда будет более низкой, чем температура замерзания чистого растворителя. При этом понижение температуры замерзания раствора ΔT зам не зависит от природы растворенного вещества и определяется лишь соотношением числа частиц растворителя и растворенного вещества.

Рис. 11. Понижение температуры замерзания разбавленных растворов

Можно показать, что понижение температуры замерзания раствора ΔT зам прямо пропорционально моляльной концентрации раствора:

Уравнение называют вторым законом Рауля . Коэффициент пропорциональности K – криоскопическая постоянная растворителя – определяется природой растворителя.

Температура кипения разбавленных растворов

Температура кипения растворов нелетучего вещества всегда выше, чем температура кипения чистого растворителя при том же давлении. Рассмотрим Р – T диаграмму состояния растворителя и растворов различной концентрации (рис.11). Любая жидкость – растворитель или раствор – кипит при той температуре, при которой давление насыщенного пара становится равным внешнему давлению. Соответственно температуры, при которых изобара Р = 1 атм. пересечет кривые ОА, ВС и DE, представляющие собой зависимости давления пара над чистым растворителем и растворами с возрастающими концентрациями соответственно, будут температурами кипения этих жидкостей (рис. 12).

Повышение температуры кипения растворов нелетучих веществ ΔT к = T к – T° к пропорционально понижению давления насыщенного пара и, следовательно, прямо пропорционально моляльной концентрации раствора. Коэффициент пропорциональности E есть эбулиоскопическая постоянная растворителя , не зависящая от природы растворенного вещества.

Рис. 12 Повышение температуры кипения разбавленных растворов

Т.о., второй закон Рауля можно в наиболее общем виде сформулировать следующим образом:

Понижение температуры замерзания и повышение температуры кипения разбавленного раствора нелетучего вещества прямо пропорционально моляльной концентрации раствора и не зависит от природы растворенного вещества.

Второй закон Рауля является следствием из первого; данный закон справедлив только для бесконечно разбавленных растворов. Коэффициенты пропорциональности в уравнениях – эбулиоскопическая и криоскопическая константы – имеют физический смысл соответственно повышения температуры кипения и понижения температуры замерзания растворов с моляльной концентрацией, равной 1 моль/кг . Однако, поскольку такие растворы не являются бесконечно разбавленными, эбулиоскопическая и криоскопическая константы не могут быть непосредственно определены и относятся поэтому к числу т.н. экстраполяционных констант.

Теория электролитической диссоциации

Растворы всех веществ можно разделить на две группы:электролиты -проводят электрический ток, неэлектролиты -проводниками не являются. Это деление является условным, потому что все растворы веществ проводят электрический ток, все они в той или иной мере растворяются в воде и распадаются на катионы (положительно заряженные ионы) и анионы (отрицательно заряженные ионы). Следует различать настоящие и потенциальные электролиты.

Настоящие электролиты находятся в виде ионов уже в индивидуальном состоянии, т.е. до того, как они будут расплавлены или переведены в раствор. К настоящим электролитам относятся все типичные соли, которые в твёрдом состоянии образуют ионную кристаллическую решётку (например NaCl, K 2 SO 4 и т.д.)

Потенциальные электролиты в индивидуальном состоянии ионов не содержат, но образуют их при переходе вещества в раствор. К ним относятся вещества, состоящие из молекул с сильно полярными связями (например HCl).

К неэлектролитам относится большая часть органических соединений, например диэтиловый эфир, бензол, глюкоза, сахароза.
Заряженные частицы появляются только в растворах и расплавах веществ вследствие электролитической диссоциации.

Электролитическая диссоациация-это процесс распада веществ на ионы при растворении или расплавлении.

Следовательно, в результате диссоциации в растворе появляются ионы, которые являются предпосылкой для появления у раствора или расплава такого физического свойства как электропроводимость.

Как же происходит процесс растворения? Разрушение ионной кристаллической решётки происходит под воздействием растворителя, например воды. Полярные молекулы воды настолько снижают силы электростатического притяжения между ионами в кристаллической решётке, что ионы становятся свободными и переходят в раствор.
При расплавлении, когда происходит нагревание кристалла, ионы начинают совершать интенсивные колебания в узлах кристаллической решётки, в результате чего она разрушается, образуется расплав, который состоит из ионов.

Теорию электролитической диссоциации создал в1884-1887 гг. шведский химикАррениус .Эта классическая теория позволила как электропроводимость расплавов и растворов, так и протекание химических реакций в растворах между расплавленными или растворёнными веществами.

ОСМОМЕТРИЯ (от осмос и греч. metreo -измеряю), совокупность методов определения осмотич. давления . Измерения проводят с помощью приборов - осмометров разл. конструкций. В них р-р (или дисперсионная система) отделен от чистого р-рителя мембраной, проницаемой для р-рителя (дисперсной среды), но непроницаемой для растворенного в-ва (дисперсной фазы). Измеряют избыточное давление, к-рое должно быть приложено к р-ру. чтобы предотвратить его самопроизвольное разбавление диффундирующим сквозь мембрану р-рителем. В статич. осмометрах непосредственно измеряют это давление после достижения равновесия по высоте столба жидкости, к-рая устанавливается в результате проникновения р-рителя через мембрану в р-р. В динамич. осмометрах измеряют зависимость скорости перехода р-рителя через мембрану от перепада давления по обе ее стороны (т. наз. противодавления р). Скорость движения р-рителя w становится равной нулю при р =. Обычно строят графич. зависимость w = f (p )и путем экстраполяции до w = 0 находят осмотич. давление.

Осмометрию используют при расчетах аппаратов обратного осмоса, но осн. приложение ее состоит в определении мол. м ассы полимеров. Согласно закону Вант-Гоффа (см. Осмос), осмотич. давление равно противодавлению, к-рое нужно создать над идеальным или бесконечно разб. р-ром, чтобы выравнить хим. потенциалы р-рителя в камерах до и после мембраны. Такое давление формально вычисляют по тому же ур-нию, что и давление идеального газа: V = nRT , где п - число молей растворенного в-ва, V - объем р-ра, R - газовая постоянная, Т - абс. т-ра. Это ур-ние можно записать в виде: /С = RT / M , где С - концентрация растворенного в-ва, М - его мол. м асса. Отклонение от идеальности приводит к зависимости величиныот концентрации С. Согласно статистич. теории Флори Хаггинса, для разб. р-ров полимеров справедливо выражение:= RT / A 1 + A 2 C + + А3С2 + ...), где А, величины, связанные с вириальными коэф., учитывающими двойные, тройные и др. взаимод. молекул;

где М1 и М -м ол. массы р-рителя и полимера соотв.,и -их плотности,константа, характеризующая взаимод. поли-мера с р-рителем.

Пренебрегая концентрац. членами высших порядков, получим:

т.е. ур-ние прямой в координатах p /С -С . Тангенс угла наклона этой прямой равен, что используют для нахождения величины.

Для определения мол. массы измеряют осмотич. давление ряда разб. р-ров с разл. концентрацией исследуемого полимера в одном и том же р-рителе и экстраполируют зависимости/С = f (С) до значений С = 0. Поскольку полимеры полидисперсны, то найденная мол. м асса является усредненной по числу молекул.

При измерениях пользуются как статич., так и динамич. осмометрами. Статич. методы характеризуются относит. большим временем установления равновесия, так что низ-комол. примеси успевают равномерно распределиться по обе стороны мембраны и поэтому не оказывают влияния на результаты измерений. Однако возможна адсорбция полимера мембраной, что снижает точность определения мол. м ассы. При использовании динамич. методов адсорбция полимера мембраной не вносит заметной ошибки, но этот метод требует более сложной аппаратуры и точность его меньше, чем у статич. метода, если р-р содержит низкомол. примеси. Диапазон измеряемых мол. м асс с помощью осмометрии составляет 103-106.

Применение осмометров в клинической лабораторной диагностике

Известно, что организм высших животных и человека характеризуется совокупностью показателей, описывающих физико-химические свойства внутренней среды организма и его физические характеристики.

Данная совокупность определяет некоторый функциональный уровень организма. Этот уровень поддерживается в результате деятельности комплекса разнообразных функциональных систем, ответственных за выполнение определенных функций (например, функций, поддержания постоянства температуры организма, артериального давления и др.).

В соответствии с концепцией гомеостаза, организм может находиться в равновесии только тогда, когда каждая входящая в его состав подсистема также находится в равновесном состоянии. Организация и функционирование живых систем характеризуется сложностью процессов управления, обеспечивающих их высокую надежность и способность противостоять воздействиям внешней среды. Эффективность процессов управления в значительной степени зависит от постоянства внутренней среды организма, которую необходимо непрерывно поддерживать с учетом характеристик внешних воздействий.

Еще в XIX веке великий ученый Клод Бернар обосновал представление о том, что поддержание постоянства состава внутренней среды есть основа нашей свободной и независимой жизни.

Системой, отвечающей за процессы всасывания, распределения, потребления и выведения воды и солей, и таким образом, обеспечивающей относительное постоянство осмотического давления жидкостей внутренней среды, является система регуляции водно-солевого обмена или система осморегуляции, основным регулируемым параметром которой является суммарная концентрация осмотически активных веществ (осмоляльность), которая поддерживается в организме с высокой точностью. С особой точностью поддерживается состав крови.

Поддержание осмоляльности на нормальном уровне осуществляется этой системой с весьма сложными центральными и периферическими механизмами. Система осморегуляции включает афферентное звено в виде осморецепторов (датчиков) – чувствительных образований, обращенных во внутреннюю среду и реагирующих на изменение концентрации в ней растворенных частиц. Импульсы от осморецепторов передаются в гипоталамический центр осморегуляции (супраоптическое ядро гипоталамуса), а оттуда – к исполнительным органам (почки, потовые железы, желудочно-кишечный тракт).

У здоровых людей в норме осмоляльность плазмы крови составляет 285 ±10 , слюны – 100…200 , желудочного сока - 160…340 , желчи – 280…300 , мочи 50…1500 ммоль/кг Н2О. Эффекторным (исполнительным) органом в системе осморегуляции крови является почка.

Сущность процесса регуляции, обеспечивающего постоянство концентрации осмотически активных веществ в кр ови, состоит в том, что при повышении осмоляльности крови раздражаются осморецепторы, широко представленные в различных органах и тканях. Под влиянием этих стимулов возбуждаются нейроны супраоптического ядра гипоталамуса, из которых освобождается в кровь антидиуретический гормон (АДГ)- вазопрессин. В результате чего в собирательных трубках почек АДГ увеличивает проницаемость для воды и возрастает реабсорбция (обратное всасывание) воды в кровь из первичной мочи и постепенно нормализуется осмотический статус крови. Таким образом, вода задерживается в организме, а моча выделяется концентрированной (верхний предел изменения концентрации мочи 1500 ммоль/кг Н2О) .

В обычных условиях увеличение концентрации крови на 1 ммоль/кг Н2О приводит к секреции АДГ, при этом осмоляльность мочи возрастает почти в 100 раз – 80-95 ммоль/кг Н2О.

Противоположная по знаку реакция – уменьшение секреции АДГ наступает при гипоосмии (уменьшении концентрации), что приводит, наоборот, к увеличению выделения воды из организма. По этой причине моча выделяется значительно меньшей концентрации (нижний предел изменения концентрации мочи 50 ммоль/кгН2О).

Как было отмечено, исполнительным органом в системе осморегулирования крови является почка. Всякое нарушение функции почки приводит к осмотическим сдвигам и тяжелым последствиям, может вызвать отеки, судороги, слабость, тяжелую анемию и др.

Отсюда важный вывод о том, как ценна информация о состоянии системы водно-солевого обмена в клинической практике.

В мировой практике осмоляльность биологических жидкостей измеряется с помощью высокочувствительных приборов, называемых осмометрами.

Водные растворы, какими являются биологические жидкости, характеризуются группой связанных друг с другом свойств, называемых коллигативными (коллективными). Четыре свойства из группы коллигативных свойств рассматриваются обычно вместе, а именно:

1. Понижение давления пара растворителя над раствором

ΔP пар = Кпар · m ,

где m - моляльность; Кпар – константа давления пара.

2. Повышение температуры кипения раствора

ΔТкип = Ккип · m ,

где m – моляльность; Ккип – эбулиоскопическая константа.

3. Понижение температуры замерзания раствора

ΔТзам = Кзам · m ,

где m – моляльность; Кзам – криоскопическая константа.

4. Осмотическое давление

ΔРосм = Косм · m ,

где m – моляльность; Косм – константа осмотического давления.

Как видно, эти свойства изменяются пропорционально концентрации m растворенного вещества. Причем, эти свойства не зависят от природы и химического состава растворенного вещества. Каждое из перечисленных коллигативных свойств может быть измерено (причем, измерив одно свойство, можно рассчитать другие по известным формулам) и использовано для построения приборов, называемых осмометрами, которые широко применяются в мировой клинической практике для контроля осмоляльности биологических жидкостей (кровь, моча, ликвор идр.) и водных растворов (инфузионные растворы, кровезаменители, растворы парентерального и энтерального питания и др.).

В соответствии с перечисленными свойствами на мировом рынке медицинской техники существуют:

Осмометры давления пара;

Осмометры по точке замерзания (криоскопические);

Мембранные осмометры (осмометры прямого действия).

Примечание: учитывая специфический характер второго свойства, на практике осмометры по температуре кипения для биологических объектов не нашли применения.

При выборе осмометра необходимо понимать, что по некоторым характеристикам они не взаимозаменяемы. Дадим характеристику каждому.

Осмометры давления пара

Этот тип приборов отличается тем, что для измерения требуется минимальный объем пробы (единицы микролитров), что имеет большое значение, когда из объекта исследования нельзя взять больший объем. Однако по причине малости объема пробы осмометры давления пара имеют большую погрешность по сравнению с другими. Кроме того, результат измерения зависит от изменения атмосферного давления. Основное применение эти приборы нашли в научных исследованиях и педиатрической практике для исследований крови новорожденных, взятой из пальчика или пяточки. Диапазон измеряемых концентраций ограничивается 2000 ммоль/кг Н2О. В российских ЛПУ они не нашли широкого применения. В Европейском союзе осмометры давления пара производит фирма Dr . Knauer , Gonotec (Германия), в США - фирма Wescor .

Мембранные осмометры

Осмосом называется процесс, при котором происходит движение молекул растворителя из раствора с низкой концентрацией в раствор с высокой концентрацией через мембрану, проницаемую только для молекул растворителя. На этом свойстве строятся осмометры, называемые мембранными. В их конструкции могут использоваться как искусственные мембраны (например, целлофан), так и природные (например, кожа лягушки).

Приборы этого типа используются для измерения так называемого коллоидно-осмотического давления крови (КОД), которое создается высокомолекулярной (более 30000 Д) составляющей общей концентрации осмотически активных частиц, содержащихся в плазме крови. Это давление называется также онкотическим и создается преимущественно белками. КОД составляет менее 3 ммоль/кг Н2О и поэтому незначительно влияет на общее осмотическое давление, но имеет определяющее значение для процессов транскапиллярного обмена. Эта составляющая общего давления имеет важное диагностическое значение. Мембранные осмометры производят фирмы Dr. Knauer , Gonotec , Германия (Osmomat 050), в США - фирма Wescor . Интересно, что фирма доктора Кнауэра предлагает всю линейку осмометров, перекрывая, таким образом, весь диапазон частиц с молекулярной массой, включая миллионные.

Приборы этого типа в России не производятся. О применении зарубежных приборов имеется скудная информация.

Осмометры, принцип действия которых основан на измерении понижения (депрессии) температуры замерзания раствора в сравнении с температурой замерзания растворителя (в нашем случае воды), нашли наибольшее распространение по причине наилучшей пригодности этой методики для лабораторной клинической диагностики нарушений водного и электролитного баланса (молекулярные массы частиц биологических жидкостей не превышают 30000 Д).

Первые образцы приборов, больше напоминавшие установки, были громоздкими по причине несовершенства охлаждающей системы (использовались льдосолевые смеси), в качестве индикатора температуры замерзания применялись ртутные термометры.

Настоящую революцию в приборостроении совершили достижения в области полупроводниковой техники. К середине 60-х годов появились полупроводниковые датчики температуры, обладающие малыми габаритами и высокой стабильностью температурной характеристики.

Пионерские исследования академика А.Ф. Иоффе в области физики полупроводников позволили подойти к практической реализации термоэлектрических модулей (микроохладителей), что позволяло строить компактные термостатирующие устройства. Шестидесятые годы можно охарактеризовать, как период бурного развития научных исследований в области осмометрии, метрологии осмометрии и появления на рынке приборостроительных фирм с первыми моделями осмометров. К таким фирмам можно отнести упоминавшуюся фирму доктора Герберта Кнауэра (с которым автор имел длительный период общения), фирмы Advanced Instr. Inc. и Precision Syst. (США), которые в настоящее время являются крупнейшими по разработке и производству осмометров и криоскопов. В этот же период в больницах и научных учреждениях медико-биологического профиля стали появляться первые приборы этих фирм. Наибольшее распространение получили модели 3D2 (Advanced Instr. Inc.) и полумикроосмометр доктора Кнауэра.


Развитие этого направления в нашей стране началось с десятилетним опозданием в 1974 году в рамках Постановлений Советского Правительства по разработке высокочувствительных приборов и их внедрению в практику медико-биологических исследований. Куратором работ выступала Академия наук СССР. Работа в этом направлении была поручена ВНИИ Научного приборостроения (в последствии объединившегося с НПП «Буревестник»), на котором с 1972 года работал автор этой статьи. Работа по реализации этого Постановления позволила автору создать и освоить в производстве модель осмометра типа МТ-1, которая стала базовой для разработки пяти поколений осмометров (МТ-2, МТ-4, МТ-5 и ОМТ-5) использующихся как в промышленности, так и медицине. На фото показан первый в СССР (1976 год) высокочувствительный миллиосмометр с чувствительностью, равной 0,1 ммоль/кг H 2 O .

Впервые были разработаны средства метрологического обеспечения измерений осмоляльности и температуры замерзания водных растворов, что позволяло осуществлять производство приборов данного типа на территории Результаты работы по реализации методики осмометрии, ее теоретическое обоснование были обобщены автором в диссертационной работе на тему «Разработка и исследование технических средств измерения концентрации осмотически активных веществ в биологических жидкостях и водных растворах » .

Представим, что в равновесную систему жидкость А – пар введено некоторое вещество В. При образовании раствора мольная доля растворителя X А становится меньше единицы; равновесие в соответствии с принципом Ле Шателье – Брауна смещается в сторону конденсации вещества А, т.е. в сторону уменьшения давления насыщенного пара РА. Очевидно, что, чем меньше мольная доля компонента А в растворе, тем меньше парциальное давление его насыщенных паров над раствором. Для некоторых растворов выполняется следующая закономерность, называемаяпервым законом Рауля.

Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причем коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.

Относительное понижение парциального давления пара растворителя над раствором равно мольной доле растворенного вещества и не зависит от природы растворенного вещества.

Первый закон Рауля нетрудно вывести, используя понятие химического потенциала компонента, если считать пар над раствором идеальным газом.Условием гетерогенного равновесия является равенство химических потенциалов компонентов системы во всех фазах. Химический потенциал растворителя в растворе μ А( р) связан с мольной долей растворителя в растворе X А уравнением.

Химический потенциал растворителя в паре μ А( п) можно выразить через парциальное давление пара растворителя РА.

Химический потенциал чистого жидкого растворителяμ *А равен химическому потенциалу равновесного пара.

В состоянии равновесия μ А( п) = μ А(р). Комбинируя выражения (3-5), легко получить.

Принимая, что μ *А = μ °А (р), получаем следующее уравнение.

Отсюда легко получить выражение для первого закона Рауля.

Растворы, для которых выполняется первый закон Рауля, называютидеальными растворами. Идеальными при любых концентрациях являются растворы, компоненты которых близки по физическим и химическим свойствам (оптические изомеры, гомологи и т.п.) и образование которых не сопровождается объёмными и тепловыми эффектами. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором. Растворы, компоненты которых существенно различаются по физическим и химическим свойствам, подчиняются закону Рауля лишь в области бесконечно малых концентраций.

Если компоненты бинарного раствора летучи, то пар над раствором будет содержать оба компонента (относительное содержание компонентов в парах будет, как правило, отличаться от содержания их в растворе:пар относительно богаче компонентом, температура кипения которого ниже – см. следующий параграф). Рассмотрим идеальный бинарный раствор, состоящий из компонентов А и В, неограниченно растворимых друг в друге. Общее давление пара, согласно первому закону Рауля, равно

Таким образом, для идеальных бинарных растворов зависимость общего и парциального давления насыщенного пара от состава раствора, выраженного в мольных долях компонента В , является линейной при любых концентрациях. К таким системам относятся, например, системы бензол – толуол, гексан – гептан, смеси других изомерных углеводородов. Для реальных растворов данные зависимости являются криволинейными.

Если молекулы данного компонента взаимодействуют друг с другом сильнее, чем с молекулами другого компонента, то истинные парциальные давления паров над смесью будут больше, чем вычисленные по первому закону Рауля (положительные отклонения). Если же однородные частицы взаимодействуют друг с другом слабее, чем разнородные, парциальные давления паров компонентов будут меньше вычисленных (отрицательные отклонения).

Образование реальных растворов сопровождается тепловым и объёмным (т.н. контракция) эффектами. Реальные растворы с положительными отклонениями от закона Рауля образуются из чистых компонентов с поглощением теплоты (Δ Нраств > 0); объём раствора оказывается больше, чем сумма исходным объёмов компонентов (ΔV > 0).Растворы с отрицательными отклонениями от закона Рауля образуются с выделением теплоты (Δ Нраств < 0)) ; объём раствора в этом случае будет меньше, чем сумма исходным объёмов компонентов (ΔV < 0).

Зако́ны Ра́уля - общее название открытых французским химиком Ф. М. Раулем в 1887 г. количественных закономерностей, описывающих некоторые коллигативные (зависящие от концентрации, но не от природы растворённого вещества) свойства растворов.

Изотонический коэффициент (также фактор Вант-Гоффа ; обозначается i) - безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы.

Смысл параметра ясен из определения каждого из коллигативных параметров: они зависят от концентрации в растворе частиц растворённого вещества. Неэлектролиты в растворе не диссоциируют, стало быть, каждая молекула неэлектролита образует в растворе лишь одну частицу. В свою очередь, электролиты в растворе под влиянием сольватации частично или полностью распадаются на ионы, образуя при этом несколько частиц на одну диссоциировавшую молекулу. Соответственно, и коллигативные свойства данного раствора (аддитивные величины) зависят от содержания в нём частиц (ионов) каждого типа из тех, которым принадлежат частицы, образовавшиеся в растворе в результате диссоциации исходной молекулы, - раствор представляется как бы смесью растворов каждого из типов частиц. Например, раствор хлорной извести содержит три типа частиц - катионы кальция, хлорид-анионы и гипохлорит-анионы. Итак, изотонический коэффициент показывает, насколько в растворе электролита больше частиц по сравнению с раствором неэлектролита аналогичной концентрации, и связан со способностью вещества распадаться в растворе на ионы, то есть, со степенью диссоциации. Если формульная единица или молекула содержит n ионов (или атомов при полярных связях, в растворе превращающихся в ионы), количество исходных молекул равно N, а степень диссоциации соединения - α, то количество диссоциировавших молекул равно N·α (при этом образуются N·α·n ионов), а общее количество частиц в растворе равно ((N - N·α) + N·α·n).

Изотонический коэффициент в растворах сильных электролитов

Поскольку сильные электролиты диссоциируют практически полностью, можно было бы ожидать для них изотонический коэффициент, равный количеству ионов (или поляризованных атомов) в формульной единице (молекуле). Однако в действительности этот коэффициент всегда меньше определённого по формуле. Например, изотонический коэффициент для 0,05-моляльного раствора NaCl равен 1,9 вместо 2,0 (для раствора сульфата магния той же концентрации и вовсе i = 1,3). Это объясняет теория сильных электролитов, разработанная в 1923 году П. Дебаем и Э. Хюккелем: передвижение ио нов в растворе затруднено образовавшейся оболочкой сольватации. К тому же, ионы взаимодействуют и между собой: разноимённо заряженные притягиваются, а одноимённо заряженные - отталкиваются; силы взаимного притяжения приводят к образованию групп ионов, перемещающихся по раствору совместно. Такие группы называют ионными ассоциатами или ионными па́рами. Соответственно, раствор ведёт себя так, будто содержит меньше частиц, чем на самом деле, ведь свобода их перемещения ограничена. Наиболее очевиден пример, касающийся электропроводности растворов λ, которая возрастает с разбавлением раствора. Через отношение реальной электропроводности к таковой при бесконечном разбавлении определяют мнимую степень диссоциации сильных электролитов, также обозначаемую через α: где nimg - мнимое, а ndisslv. - реальное количество частиц в растворе.

Влияние внешних факторов

Очевидно, что взаимодействие ио нов уменьшается с повышением температуры (вследствие возросшего теплового движения частичек), а также с уменьшением их концентрации, то есть, разбавлением раствора, ведь тогда уменьшается вероятность встречи двух частичек. Экстраполируя разбавление в сторону бесконечности, коэффициент i стремится к своему максимальному значению, определяемому по формуле растворённого соединения. Степень диссоциации α, в соответствии с вышеупомянутой формулой зависимости между i и α, одновременно возрастает, приближаясь к единице.

Изотонический коэффициент был введён в последней четверти XIX века Я. Х. Вант-Гоффом . В 1901 году он первым получил Нобелевскую премию по химии - за свои заслуги в изучении растворов.

Изотонические растворы - водные растворы, изотоничные плазме крови. Простейшим раствором такого типа является 0,9% водный раствор хлорида натрия (NaCl ) - так называемый физиологический раствор («физраствор»). Название это очень условное, так как «физраствор» не содержит многих веществ (в частности, солей калия), необходимых для физиологической деятельности тканей организма.

Другими примерами изотонических растворов, имеющих более физиологичный состав, являются:

раствор Рингера

раствор Рингера - Локка

раствор Рингера - Тироде

раствор Кребса - Рингера,

Дисоль, Трисоль, Ацесоль, Хлосоль

Лактасол

Приготовление физраствора

При приготовлении растворов соли добавляются последовательно, каждую последующую соль прибавляют только после растворения предыдущей . Для предотвращения выпадения осадка углекислого кальция рекомендуется через раствор бикарбоната натрия пропускать углекислый газ. Глюкозу добавляют в растворы непосредственно перед применением. Все растворы готовят на свежей дистиллированной воде, перегнанной в стеклянной аппаратуре (металлы оказывают значительное влияние на жизнедеятельность тканей).

Хлористый натрий содержится в плазме крови и тканевых жидкостях организма (концентрация около 0,9 %), являясь важнейшим неорганическим компонентом, поддерживающим соответствующее осмотическое давление плазмы крови и внеклеточной жидкости. В организм натрия хлорид поступает в необходимых количествах с пищей. Дефицит может возникать при различных патологических состояниях, сопровождающихся повышенным выделением, при отсутствии компенсирующего поступления с пищей. Усиленная потеря ионов калия и хлора имеет место при длительном сильном холероподобном поносе, неукротимой рвоте, обширных ожогах, гипофункции коры надпочечников. При снижении концентрации натрия хлорида в плазме крови, вода переходит из сосудистого русла в межтканевую жидкость и развивается сгущение крови. При значительном дефиците спазмируются гладкие мышцы и появляются судорожные сокращения скелетной мускулатуры, нарушаются функции нервной и сердечно-сосудистой систем. Растворы натрия хлорида широко используются в медицинской практике и в зависимости от концентрации разделяются на изотонический (0,9 %) и гипертонический. Раствор (0,89 %) натрия хлорида изотоничен плазме крови человека и поэтому быстро выводится из сосудистого русла, лишь временно увеличивая объем циркулирующей жидкости, поэтому его эффективность при кровопотерях и шоке недостаточна. Гипертонические растворы (3-5-10 %) применяются внутривенно и наружно. При наружной аппликации они способствуют выделению гноя, проявляют антимикробную активность, при внутривенном введении усиливают диурез и восполняют дефицит ионов натрия и хлора.

Гемо́лиз (от др.- греч. αἷμα кровь + λυσις распад, разрушение) - разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (ок. 125 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

Эритроциты в плазме крови представляют собой двояковогнутые диски - дискоциты. Под влиянием различных факторов их объём может увеличиваться. Объем дискоцита можно увеличить до сферической формы без изменения площади поверхности мембраны, дальнейшее увеличение объема требует увеличения площади поверхности. Но клеточные мембраны почти не растяжимы, так что увеличение площади поверхности мембраны приводит к её разрыву с последующим выходом гемоглобина из клетки. Гемолитическая стойкость эритроцитов, таким образом, зависит от эластичности мембраны.

g В этом случае большая часть гемоглобина разрушенных эритроцитов связывается со специфическим белком - гаптоглобином, а избыток, проходя через почечный фильтр, обнаруживается в моче - гемоглобинурия. Распад сразу большой массы эритроцитов (например, при гемолитических анемиях) сопровождается тяжёлым состоянием организма (гемолитический шок) и может привести к смерти.

Плазмолиз (от др.- греч. πλάσμα - вылепленное, оформленное и λύσις - разложение, распад), отделение протопласта от клеточной стенки в гипертоническом растворе.

от вязкости цитоплазмы;

Плазмометрический метод

KNO

П. характерен главным образом для растительных клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонический раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают П. выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз. Для сравнительной оценки П. в тканях существует 2 метода: пограничного П. и плазмометрический. Первый метод, разработанный Х. Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNO3, сахарозы или др. осмотически активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после П. измеряют относительный объём клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

П. характерен главным образом для растительных клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонический раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают П. выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз. Для сравнительной оценки П. в тканях существует 2 метода: пограничного П. и плазмометрический. Первый метод, разработанный Х. Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNO 3, сахарозы или др. осмотически активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после П. измеряют относительный объём клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

При приготовлении растворов соли добавляются последовательно, каждую последующую соль прибавляют только после растворения предыдущей. Для предотвращения выпадения осадка углекислого кальция рекомендуется через раствор бикарбоната натрия пропускать углекислый газ. Глюкозу добавляют в растворы непосредственно перед применением. Все растворы готовят на свежей дистиллированной воде, перегнанной в стеклянной аппаратуре (металлы оказывают значительное влияние на жизнедеятельность тканей).

Хлористый натрий содержится в плазме крови и тканевых жидкостях организма (концентрация около 0,9 %), являясь важнейшим неорганическим компонентом, поддерживающим соответствующее осмотическое давление плазмы крови и внеклеточной жидкости. В организм натрия хлорид поступает в необходимых количествах с пищей. Дефицит может возникать при различных патологических состояниях, сопровождающихся повышенным выделением, при отсутствии компенсирующего поступления с пищей. Усиленная потеря ионов калия и хлора имеет место при длительном сильном холероподобном поносе, неукротимой рвоте, обширных ожогах, гипофункции коры надпочечников. При снижении концентрации натрия хлорида в плазме крови, вода переходит из сосудистого русла в межтканевую жидкость и развивается сгущение крови. При значительном дефиците спазмируются гладкие мышцы и появляются судорожные сокращения скелетной мускулатуры, нарушаются функции нервной и сердечно-сосудистой систем. Растворы натрия хлорида широко используются в медицинской практике и в зависимости от концентрации разделяются на изотонический (0,9 %) и гипертонический. Раствор (0,89 %) натрия хлорида изотоничен плазме крови человека и поэтому быстро выводится из сосудистого русла, лишь временно увеличивая объем циркулирующей жидкости, поэтому его эффективность при кровопотерях и шоке недостаточна. Гипертонические растворы (3-5-10 %) применяются внутривенно и наружно. При наружной аппликации они способствуют выделению гноя, проявляют антимикробную активность, при внутривенном введении усиливают диурез и восполняют дефицит ионов натрия и хлора.

Физиологические растворы применяются в качестве дезинтоксикационного средства, для коррекции состояния при обезвоживании, для растворения других лекарственных препаратов, реже как заменитель крови или для промывания контактных линз.

При нарушениях функции почек, высоком артериальном давлении и сердечной недостаточности большие объемы назначают с осторожностью.

Изотонический раствор вводят внутривенно, подкожно (в связи с большим объёмом вводимого раствора - в наружную поверхность бедра) и в клизмах.

Глюкоза относится к углеводам и представляет собой один из продуктов обмена веществ организма человека и животных. В обмене веществ гл юкоза имеет главным образом энергетическое значение. При полном распаде 1 г глюкозы выделяется 17,15 кДж (4,1 ккал) тепла. Выделяемая при этом энергия обеспечивает деятельность клеток организма. Особенно велико энергетическое значение глюкозы для таких интенсивно функционирующих органов, как ЦНС, сердце, мышцы. В связи с этим глюкоза широко применяется как общеукрепляющее средство при многих хронических заболеваниях, сопровождающихся физическим истощением.

Глюкоза повышает способность печени к обезвреживанию различных ядов, чем в значительной мере объясняются антитоксические свойства глюкозы. Кроме того, при отравлениях применение больших количеств растворов глюкозы сопровождается уменьшением концентрации ядов в крови за счет увеличения массы циркулирующей в сосудах жидкости и усиления мочеотделения.

Указанные свойства глюкозы используются при лечении заболеваний печени, протекающих со снижением ее антитоксических функций (гепатит, цирроз), при терапии отравлений различными ядами (ионы тяжелых металлов, анилин, мышьяк и др.). Особо важное значение имеет глюкоза при терапии комы, возникающей на почве передозировки инсулина. Весьма часто растворы глюкозы используют для растворения различных веществ (например, норадреналина, строфантина), предназначенных для внутривенного введения. В практике глюкоза применяется в виде изотонического и гипертонических растворов.

Изотонический раствор глюкозы (5 %) имеет осмотическое давление, равное осмотическому давлению крови, поэтому его можно вводить в организм любыми путями: подкожно, внутривенно, в прямую кишку.

Гипертонические растворы глюкозы (10-20-40 %) имеют значительно большее осмотическое давление, чем кровь и ткани организма. После введения таких растворов в вену вода из тканей переходит в кровь, выравнивая ее о смотическое давление до нормального уровня. Общий объем жидкости в сосудах возрастает, и артериальное давление может повышаться. В связи с этим гипертонические растворы глюкозы используют при шоке, коллапсе и массивной кровопотере. Следует, однако, помнить, что растворы глюкозы, как и натрия хлорида, не являются полноценными заменителями крови в случае кровопотери.

Противопоказано подкожное и внутримышечное введение гипертонических растворов глюкозы в связи с опасностью развития некроза тканей.

Гемо́лиз (от др.- греч. αἷμα кровь + λυσις распад, разрушение) - разрушение эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (ок. 125 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ (у чувствительных к ним людей) и других факторов; характерен для гемолитических анемий. По локализации процесса выделяют несколько типов гемолиза:

Эритроциты в плазме крови представляют собой двояковогнутые диски - дискоциты. Под влиянием различных факторов их объём может увеличиваться. Объем дискоцита можно увеличить до сферической формы без изменения площади поверхности мембраны, дальнейшее увеличение объема требует увеличения площади поверхности. Но клеточные мембраны почти не растяжимы, так что увеличение площади поверхности мембраны приводит к её разрыву с последующим выходом гемоглобина из клетки. Гемолитическая стойкость эритроцитов, таким образом, зависит от эластичности мембраны.

В физиологических условиях ежедневно Г. подвергается 0,8% всей массы эритроцитов, обычно "стареющих". Окончательный распад "стареющих" эритроцитов происходит преимущественно в селезёнке. При распаде эритроцитов из освободившегося гемоглобина путём сложных превращений образуется один из пигментов жёлчи - билирубин, по количеству которого в крови и его производных в кале и моче можно судить о выраженности Г. Освобожденное в процессе распада гемоглобина железо депонируется в ретикулоэндотелиальных клетках печени и селезёнки. После сложных превращений железо связывается с g -глобулиновой фракцией белка крови и участвует в выработке нового гемоглобина. Отклонение в балансе между литическим агентом и ингибитором может привести к преобладанию процесса кроверазрушения над кровообразованием, т. е. к патологической Г. Патологическая Г. наблюдается при гемолитической анемиях, гемоглобинопатиях, под влиянием гемолитических ядов (токсины некоторых бактерий, свинец, мышьяк, нитробензол, яд сморчков и др.), вследствие образования аутоиммунных и изоэритроцитарных антител при переливании несовместимой крови, при резусном конфликте (см. Гемолитическая болезнь новорождённых), воздействии некоторых химических агентов, холода; у чувствительных лиц - при приёме некоторых лекарственных веществ, вдыхании пыльцы некоторых растений и др. При патологической Г. разрушение эритроцитов происходит во всех клетках ретикулоэндотелиальной системы (печень, костный мозг, лимфатические узлы и др.), а также может наблюдаться в сосудистом русле. В этом случае большая часть гемоглобина разрушенных эритроцитов связывается со специфическим белком - гаптоглобином, а избыток, проходя через почечный фильтр, обнаруживается в моче - гемоглобинурия. Распад сразу большой массы эритроцитов (например, при гемолитических анемиях) сопровождается тяжёлым состоянием организма (гемолитический шок) и может привести к смерти.

Плазмолиз (от др.- греч. πλάσμα - вылепленное, оформленное и λύσις - разложение, распад), отделение протопласта от клеточной стенки в гипертоническом растворе.

Плазмолизу предшествует потеря тургора.

Плазмолиз возможен в клетках, имеющих плотную клеточную стенку (у растений, грибов, крупных бактерий). Клетки животных, не имеющие жесткой оболочки, при попадании в гипертоническую среду сжимаются, при этом отслоения клеточного содержимого от оболочки не происходит. Характер плазмолиза зависит от ряда факторов:

от вязкости цитоплазмы;

от разности между осмотическим давлением внутриклеточной и внешней среды;

от химического состава и токсичности внешнего гипертонического раствора;

от характера и количества плазмодесм;

от размера, количества и формы вакуолей.

Различают уголковый плазмолиз, при котором отрыв протопласта от стенок клетки происходит на отдельных участках, вогнутый плазмолиз, когда отслоение захватывает значительные участки плазмалеммы, и выпуклый, полный плазмолиз, при котором связи между соседними клетками разрушаются практически полностью. Вогнутый плазмолиз часто обратим; в гипотоническом растворе клетки вновь набирают потерянную воду, и происходит деплазмолиз. Выпуклый плазмолиз обычно необратим и ведет к гибели клеток.

Выделяют также судорожный плазмолиз, подобный выпуклому , но отличающийся от него тем, что сохраняются цитоплазматические нити, соединяющие сжавшуюся цитоплазму с клеточной стенкой, и колпачковый плазмолиз, характерный для удлиненных клеток.

Есть 2 способа сравнительной оценки плазмолиза в тканях:

Метод пограничного плазмолиза

Плазмометрический метод

В первом методе, который создал Хуго Д е Фриз, ткани погружаются в растворы KNO 3, сахарозы или других осмотически активных веществ разной концентрации, и определяется концентрация, при которой плазмолизируется 50 % клеток. Плазмометрический метод заключается в измерении после плазмолиза относительных объёмов клетки и протопласта и вычислении по концентрации раствора осмотического давления клетки.

П. характерен главным образом для растительных клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонический раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают П. выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз. Для сравнительной оценки П. в тканях существует 2 метода: пограничного П. и плазмометрический. Первый метод, разработанный Х. Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNO3, сахарозы или др. осмотически активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после П. измеряют относительный объём клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

П. характерен главным образом для растительных клеток, имеющих прочную целлюлозную оболочку. Животные клетки при перенесении в гипертонический раствор сжимаются. В зависимости от вязкости протоплазмы, от разницы между осмотическим давлением клетки и внешнего раствора, а следовательно от скорости и степени потери воды протоплазмой, различают П. выпуклый, вогнутый, судорожный и колпачковый. Иногда плазмолизированные клетки остаются живыми; при погружении таких клеток в воду или гипотонический раствор происходит деплазмолиз. Для сравнительной оценки П. в тканях существует 2 метода: пограничного П. и плазмометрический. Первый метод, разработанный Х. Де Фризом (1884), заключается в погружении тканей в растворы с различной концентрацией KNO 3, сахарозы или др. осмотически активного вещества и установлении той концентрации, при которой плазмолизируется 50% клеток. При плазмометрическом методе после П. измеряют относительный объём клетки и протопласта и по концентрации раствора вычисляют осмотическое давление клетки (по соответствующим формулам).

Главная > Учебно-методическое пособие

Опыт показывает, что температура замерзания и кипения рас-творов зависит от давления пара над ними. Еще М. В. Ломоносов обнаружил, что растворы замерзают при более низкой и кипят при более высокой температуре, чем чистые растворители. Понижение температуры замерзания раствора связано с понижением давления (упругости) пара растворителя над раствором. Как известно, жидкость закипает при той температуре, при которой давление ее насыщенного пара становится равным атмо-сферному давлению. Так, очищенная вода при атмосферном дав-лении замерзает при температуре 273,16 К и кипит при 373,16 К. Стоит растворить в воде какое-либо вещество, как давление ее пара понизится. Чтобы раствор закипел, необходимо нагреть его до температуры выше 373,16 К, ибо только при более высокой температуре давление пара станет равным атмосферному давле-нию. Чем больше концентрация растворенного вещества, тем при более высокой температуре будет кипеть раствор. Температура замерзания растворов также отличается от тем-пературы замерзания чистых растворителей. Известно, что жид-кость замерзает при той температуре, при которой давление пара вещества в твердом состоянии становится равным давлению пара этого же вещества в жидком состоянии. Например, при 273,16К давление пара льда (613,3 Па) равно давлению пара воды. Лед и вода могут одновременно сосуществовать друг с другом при температуре, которая носит название температуры замерзания. Если взять какой-то водный раствор, то вследствие понижения давления пара при 273,16 К он будет обладать меньшим, чем 613,3 Па, давлением пара. По этой причине лед, опущенный в та-кой раствор, будет быстро таять. Лишь при некоторой темпера-туре, лежащей ниже 0°С, давление пара над раствором уменьшится настолько, что станет рав-ным давлению пара льда при той же температуре. Таким образом, раствор будет за-мерзать при более низкой температуре, чем чистый растворитель. Например, раствор, содержащий 0,1 кг поваренной соли в 1 кг воды, замерзает, как показывает опыт, не при 273,16 К, а при 259,56 К, морская вода - при 270,66 К. Второй закон Рауля. Процессы замерзания и кипения растворов были детально изучены Раулем (1882), который установил закон, впоследствии названный его именем и характеризуемый уравнением:

Это и есть математическое выражение второго закона Рауля: по-нижение температуры замерзания или повышение температуры кипения растворов прямо пропорционально его моляльной концентрации. Коэффициент К в уравнении (4.9) носит название криоскопической постоянной (греч. kryos - холод). Она представляет со-бой величину, характерную для данного растворителя, и показы-вает понижение температуры замерзания, вызываемое растворе-нием 1 моль вещества (неэлектролита) в 1 кг этого растворителя. В самом деле, из уравнения (4.9) следует, что при m = 1 T = К. Криоскопическая постоянная является постоянной вели-чиной, она не зависит от природы растворенного вещества, а толь-ко от природы растворителя. Численные значения криоскопических констант (в К) для некоторых растворителей приведены ниже: Таблица 4.3 Криоскопические постоянные растворителей Аналогична криоскопической постоянной константа кипения, или эбулиоскопическая постоянная (лат. ebulyo - вскипать). Она характерна для данного растворителя и показывает, на сколько градусов повышается температура кипения при растворении 1 моль неэлектролита в 1 кг растворителя. Численные значения эбулиоскопических констант кипения (в К) приведены ниже: Таблица 4.4 Эбулиоскопические постоянные растворителей Напомним, что математическое выражение второго закона Рауля в случае изменения температуры кипения растворов будет совер-шенно аналогично уравнению (4.9), только вместо криоскопи-ческой постоянной (К) берут эбулиоскопическую константу (E ):
Свойство растворов понижать температуру замерзания воды широко используется в практике для приготовления так называе-мых антифризов, которые представляют собой водные растворы некоторых органических и неорганических веществ. Эти растворы не замерзают при низких температурах и потому широко при-меняются для охлаждения двигателей автомобилей и тракторов в условиях Крайнего Севера. Например, такой антифриз, как 55%-ный раствор этиленгликоля в воде, не замерзает даже при температуре 233 К. Понижение температуры замерзания растворов имеет боль-шое значение для живых организмов. Так, сок в их клетках пред-ставляет собой в основном раствор органических веществ; его температура замерзания лежит ниже 273 К, поэтому организмы не погибают при пониженных температурах. Характерно отме-тить, что зимостойкость растений обусловлена концентрацией кле-точного сока: чем выше концентрация, тем более низкие темпе-ратуры может переносить растение. Процесс превращения более высокомолекулярных соединений в соединения с меньшей молеку-лярной массой при наступлении холодов (например, крахмала в углеводы типа глюкозы), протекающий в клетках растений, так-же вызван стремлением повысить концентрацию клеточного сока. По этой же причине хорошо сохраняются овощи и фрукты при температуре 272 К. Методы измерения концентрации клеточного сока по темпе-ратурам замерзания растворов в настоящее время широко ис-пользуются в селекционной работе при выведении новых зимо-стойких сортов различных сельскохозяйственных культур. § 48. Применение методов криоскопии и эбулиоскопии. Измерение понижения температуры замерзания или кипения раствора позволяет решать целый ряд вопросов, касающихся свойств данного раствора и растворенного вещества. Метод ис-следования, основанный на измерении понижения температуры за-мерзания растворов, называется криоскопическим методом, а ме-тод, основанный на измерении температуры повышения кипения растворов, получил название эбулиоскопического метода. Для более точного измерения температуры замерзания или кипения раство-ра обычно применяют дифференциальный термометр Бекмана, который имеет шкалу, раз-деленную на 5-6 градусов. . С помощью такого термомет-ра можно определять разность температур в широком интерва-ле, а также температуры замерзания и кипения различных рас-творов. В лабораторной практике криоскопический метод нашел значительно боль-шее распространение по сравнению с методом эбулиоскопии: измерять точки за-мерзания растворов при этом значительно проще и безопаснее, чем точки кипе-ния их. Определение молекулярной массы вещества. Криоскопическим методом часто пользуются при определении молекулярной массы вещества. Решая выражение (4.8) относительно М, получим окончательную формулу для вычисления молекулярной массы криоскопическим методом. Например, водный раствор сахара, содержащий 17·10 -5 кг сахара в 25·10 -3 кг воды, замерзает при температуре 273,123 К. Определить молекулярную массу сахара. Подставив данные в формулу (4.8), получим (В данном случае T=273,160-273,123 = 0,037 К.) Определение осмотического давления растворов. Опыт показывает, что изме-рение осмотического давления с помощью осмометра Пфеффера связано с целым рядом трудностей. Это измерение слишком длительно и не совсем точно, так как на практике трудно подобрать подходящую мембрану, которая бы обладала иде-альной полупроницаемостью. Осмотическое давление обычно измеряется косвен-ным путем, например методом криоскопии. В основе этого определения лежат законы Вант-Гоффа и Рауля, т. е. П = RTC Т = Кт, где С - концентрация раствора (в моль/л раствора); т - концентра-ция раствора (в моль на 1 кг растворителя). Для разбавленных растворов мож-но без большой погрешности принять, что т = С. Подставив в уравнение закона Вант-Гоффа вместо С равное значение T / K из закона Рауля, найдем
После замены буквенных выражений R , Т и К их численными значениями (для разбавленных растворов) получим окончательное уравнение для вычисления осмо-тического давления криоскопическим методом: Определение концентрации раствора. На основании второго закона Рауля можно сравнительно легко вычислять моляльную концентрацию раствора, если известно понижение его температуры замерзания:
Таким способом можно определять концентрацию клеточного сока растений и кон-центрацию почвенного раствора. Необходимо помнить, что найденные этим мето-дом концентрации являются суммарными, т. е. показывают содержание всех ве-ществ, находящихся в растворе, выраженное в моль на 1 кг воды. С помощью метода криоскопии можно определять осмотический коэффициент Вант-Гоффа и степень электролитической диссоциации слабых электролитов. § 49. Отступление от законов Вант-Гоффа и Рауля в растворах электролитов. Теория электролитической диссоциации. Законы Вант-Гоффа и Рауля справедливы для идеальных ра-створов, т. е. таких, в которых нет химического взаимодействия между компонентами раствора, а также диссоциации или ассоциа-ции молекул растворенного вещества. Опыт показал, что у раство-ров, проводящих электрический ток (электролиты), более высокое, чем по закону Вант-Гоффа, осмотическое давление, они кипят при более высокой температуре и замерзают при более низкой, чем это следует из закона Рауля. Такими свойствами обладают растворы солей, кислот и оснований. Обобщая наблюдения, Вант-Гофф пришел к выводу, что в отношении осмотического давления растворы электролитов ведут себя так, как будто они содержат больше частиц, чем это следует из аналитической концентрации. Исходя из этого, Вант-Гофф внес в уравнение (4.4) для растворов электролитов поправку, получившую название коэффициента Вант-Гоффа или изотонического коэффициента(i ) Отсюда следует:

Таким образом, коэффициент i можно найти, если измерить непо-средственно осмотическое давление с помощью осмометра Пфеффера или криоскопическим методом, что значительно проще. Коэф-фициент Вант-Гоффа для неэлектролитов, растворенных в воде, равен 1, а для электролитов он больше единицы. Значение коэф-фициента растет по мере разбавления электролита. Для раство-ров, в которых имеет место ассоциация молекул растворенного вещества, коэффициент i бывает меньше единицы. Причину отклонения от законов ВантТоффа и Рауля в раство-рах электролитов впервые разъяснил шведский ученый С. Аррениус (1883-1887) в своей теории электролитической диссоциации. Она основывалась на трех постулатах. 1.Электролиты обладают способностью при растворении в со-ответствующих растворителях (например, в воде, к которой пер-воначально и относилась теория Аррениуса) диссоциировать на противоположно заряженные частицы - ионы. При этом молекулы кислот распадаются на положительные ионы водорода и отрица-тельные ионы кислотного остатка: H 2 SO 4 = 2Н + + SO 4 2- молекулы оснований - на положительные ионы металла и отри-цательные гидроксид-ионы: КОН = К + + ОН - соли (средние)-на положительные ионы металла и отрицатель-ные ионы кислотного остатка: KCI = К + + CI - кислые и основные соли, помимо ионов металла и кислотного остатка, дают также в растворе ионы водорода или гидроксидионы: КН 2 РО 4 = К + + 2Н + + РО 4 3- ; Аl(ОН)SO 4 = Аl 3+ + SO 4- + ОН - Таким образом, электролиты при растворении в воде распада-ются на ионы, за счет чего увеличивается число частиц. Это уве-личение числа частиц и влияет на осмотическое давление и темпе-ратуры кипения и замерзания растворов, т. е. свойства электроли-тов определяются суммой концентраций частиц - ионов и недиссоциированных молекул. 2.Электролиты при растворении диссоциируют на ионы не пол-ностью. В состоянии равновесия доля молекул, распавшихся на ионы, количественно характеризуется степенью электролитической диссоциации и обозначается через а. Степень электролитической диссоциации равна отношению чи-сла молекул п, распавшихся на ионы, к общему числу растворен-ных молекул N (ионизированных п и неионизированных п а ) :
Величина степени электролитической диссоциации зависит от при-роды растворенного вещества и растворителя, а также от концент-рации и температуры раствора. Если вещество не диссоциирует при растворении (п = 0 , n a = N , a = 0), оно не электролит. Если а близка к единице, то п ~ N и соединение - сильный электролит. Для многих химических соединений 0 < а < 1, а следовательно, п N , т. е. они слабые электролиты. По способности к диссоциации Аррениус разделил все электро-литы на три группы: сильные электролиты (а>30%), электро-литы средней силы (а = 5-30%), слабые электролиты (а<5%). К сильным электролитам были отнесены: соляная, бромистоводородная, иодистоводородная, азотная, серная, марганцовая кисло-ты; гидроксиды натрия, калия, бария, а также большинство солей. Согласно теории Аррениуса для сильных электролитов характерна значительная диссоциация и, следовательно, хорошая электриче-ская проводимость. К слабым электролитам относятся почти все органические ки-слоты (муравьиная, уксусная, бензойная), цианистоводородная ки-слота, борная кислота, угольная кислота, сероводородная кислота, гидроксид аммония, вода, а также некоторые соли (HgCl 2 , CdCl 2). Для растворов слабых электролитов характерна очень небольшая величина электрической проводимости. К электролитам средней силы относятся фосфорная, мышьяко-вая, йодная, хромовая, сернистая кислоты и целый ряд других соединений. 3.Силы взаимодействия между ионами отсутствуют и растворы электролитов ведут себя подобно идеальным газовым системам. Это положение автором теории электролитической диссоциации и его последователями прямо не высказано, но на нем основаны ее количественные соотношения. При помощи трех постулатов теория электролитической дис-социации объяснила многие свойства растворов, дала их количе-ственную характеристику и истолковала многочисленные факты и закономерности. В своих работах Аррениус показал, что степень диссоциации электролита а можно связать с коэффициентом Вант-Гоффа i . Приведем простейший вывод этих соотношений. Предположим, что в растворе находилось N молекул электролита, из которых только п продиссоциировало на ионы. Число непродиссоциированных мо-лекул N - п, а число образовавшихся ионов ν n , где ν - число ионов, на которое диссоциирует одна молекула электролита. Тогда число всех частиц в растворе, включая и молекулы, и ионы, (N - п) + ν п, или после соответствующего преобразования После подстановки в уравнение (4.18) значений N и N + п (ν- 1) получим Поскольку i = ∆Т оп /∆Т выч, то, подставив это выражение в урав-нение (IV, 8), получим формулу для вычисления степени электро-литической диссоциации криоскопическим методом:
Из всего вышеизложенного можно сделать следующие выводы. 1. Растворы электролитов изотоничные, если при одинаковой температуре они содержат одинаковое число частиц (молекулы + ионы) в единице объема. 2. Из двух растворов с одинаковой молярной концентрацией осмотическое давление выше в растворе электролита с более высо-кой степенью диссоциации а. 3. Из двух растворов с одинаковой молярной концентрацией и степенью диссоциации а осмотическое давление выше в растворе электролита, диссоциирующего на большее число ионов. Теория электролитической диссоциации Аррениуса дала воз-можность объяснить не только причины отклонения растворов электролитов от законов Вант-Гоффа и Рауля, но и объяснить многие особенности химических свойств электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Одна-ко она имела и ряд недостатков, в частности не учитывала взаи-модействия между ионами в растворе, вызываемого их электри-ческими зарядами. И. А. Каблуков (1891), основываясь на гидратной теории растворов Д. И. Мен-делеева, считал, что нельзя рассматривать раствор как систему, в которой отсут-ствует взаимодействие частиц растворителя и растворенного вещества. На основании громадного числа фактов было установлено, что теория электролитической диссоциации приложима только к раз-бавленным растворам слабых электролитов. Поведение концент-рированных растворов слабых электролитов, а также растворов сильных электролитов любых концентраций нельзя описать коли-чественно на основании теории Аррениуса. Главный недостаток теории электролитической диссоциации, и вместе с тем причина всех ее недостатков, заключается в игно-рировании взаимодействия частиц растворенного вещества между собой, а также с молекулами растворителя. Все эти противоречия были в дальнейшем в значительной степени устранены в так на-зываемой теории сильных электролитов.
§ 50. Основные положения теории сильных электролитов. Как известно, величина электрической проводимости сильных электролитов далеко не соответствует полной диссоциации их мо-лекул па ионы. В 1923 г. Дебай и Гюккель создали теорию сильных электро-литов. В разработку этой теории большой вклад внесли Д. П. Ко-новалов, И. А. Каблуков, В. А. Кистяков, Л. В. Писаржевский, А. Нойес. Согласно этой теории в растворах сильных электроли-тов действуют электростатические силы притяжения между разноименными ионами и силы отталкивания между одноименными. Вокруг каждого иона образуется ионная атмосфера, состоящая из ионов противоположного знака. Каждый из ионов этой атмосферы находится в окружении другой ионной атмосферы. Поэтому ра-створ сильного электролита можно рассматривать как систему равномерно распределенных по всему объему сосуда разноимен-ных ионов, каждый из которых находится в центре силового поля, создаваемого окружающими ионами (рис.4.3). Тепловое дви-жение постоянно изменяет кар-тину распределения ионов в та-кой сфере: в ней происходит постоянный ионный обмен. Вви-ду того, что радиус ионной ат-мосферы относительно велик, атмосферы двух соседних ионов пересекаются, в результате че-го каждый ион в данный мо-мент может входить в состав одной или даже нескольких ионных атмосфер других ио-нов.Все это обусловливает до-вольно сложные взаимоотно-шения между компонентами раствора, которые не могут не сказаться на его свойствах. И сходя из того, что сильные электролиты полностью диссоции-рованы, можно было ожидать, что коэффициент Вант-Гоффа i для электролита, диссоциирующего, например, на два иона, должен равняться двум не только в разбавленных, но и в достаточно кон-центрированных растворах. Однако опыты не подтверждают этого. Коэффициент i в растворах сильных электролитов в значительной степени зависит от концентрации электролита, уменьшаясь с уве-личением концентрации раствора. Такая зависимость i от кон-центрации в растворах объясняется взаимодействием ионов между собой. В электрическом поле постоянного тока ионы в растворах сильных электролитов имеют меньшую подвижность ввиду ме-жионного взаимодействия. Дело в том, что под влиянием внешнего электрического поля «ионная атмосфера» смещается к одному полюсу, а ион, находя-щийся в центре этой атмосферы, стремится к другому полюсу. Кроме того, увлекаемые ионами сольватные (гидратные) оболочки также способствуют их торможению. Чем выше концентрация ра-створов, тем плотнее «ионная атмосфера» и тем медленнее дви-жутся ионы.
  1. Рабочая программа по общей химии (курс физической и коллоидной химии) для специальности: 040400-стоматология

    Рабочая программа

    Рабочая программа составлена с учетом требований Государственного образовательного стандарта высшего профессионального образования по специальности 040400 - стоматология в соответствии с учебным планом и на основании типовой программы

  2. Спеціалізація – «Технологія харчування»

    Документ

    Нужна Тетяна Валеріївна, декан факультету харчування, канд. хім. наук, доцент кафедри хімії, тел. 335-43-55, E-mail: [email protected], години 10.

  3. Тематические планы лекций, практических занятий, экзаменационные вопросы, примеры тестов тематические планы лекций по общей химии на 1 семестр (2-х часовые) Предмет и задачи химии. Химические дисциплины в системе медицинского образования

    Экзаменационные вопросы

    1. Предмет и задачи химии. Химические дисциплины в системе медицинского образования. Термодинамика. Химическая термодинамика как теоретическая основа биоэнергетики.

  4. Тематические планы лекций, практических занятий, экзаменационные вопросы, примеры тестов тематические планы лекций по общей химии на 1 семестр (2-х часовые) Тематические планы лекций по биоорганической химии на

    Экзаменационные вопросы

    1. Взаимное влияние атомов в органических молекулах.Электронные эффекты заместителей. Сопряженные системы. Сопряженные системы с открытой цепью сопряжения,р, П – сопряженные,п-п сопряжение.

  5. Рабочая программа по курсу «химия» для специальности (ей): 080502 «Экономика и управление на предприятии новый шифр название специальности (ей) (по отраслям)» для специализаций: «Экономика и управление на предприятии»

    Рабочая программа

Рис.69. Кривые изменения давления паров воды, льда и раствора в зависимости от температуры

Все чистые характеризуются строго определенными температурами (или точками) замерзания и кипения. Так, чистая при нормальном атмосферном давлении замерзает при 0° и кипит при 100°; бензол замерзает при 5,5°, а кипит при 80,1° и т. д. Эти температуры сохраняются неизменными до тех пор, пока вся жидкость не замерзнет или не превратится в пар.

Иначе обстоит дело с растворами. Присутствие растворенного повышает точку кипения и понижает точку замерзания растворителя, и тем сильнее, чем концентрированнее раствор. Поэтому растворы замерзают при более низких, а кипят при более высоких температурах, чем чистые растворители. Нетрудно доказать, что это является прямым следствием понижения давления пара растворов.

Как известно, всякая жидкость начинает кипеть при такой температуре, при которой давление ее насыщенного пара достигает величины внешнею давления. Например, под давлением 760 мм рт. ст. кипит при 100° потому, что при этой температуре давление водяного пара как раз равно 760 мм. Если же растворить в воде какое-нибудь вещество, давление ее пара понизится. Чтобы довести давление пара полученного раствора до 760 мм, очевидно, нужно нагреть раствор выше 100°. Отсюда следует, что точка кипения раствора всегда будет выше точки кипения чистого растворителя.

Более низкая температура замерзания раствора, по сравнению с чистым растворителем, объясняется тем, что точка замерзания есть та температура, при которой одновременно могут существовать твердая и жидкая фазы Жданного (стр. 218). Однако для этого необходимо, чтобы давление пара твердой и жидкой фаз было одинаковым, иначе пар будет переходить от одной фазы к другой до полного исчезновения той из них, над которой давление пара больше. Лед и могут неограниченно долго существовать вместе при 0° именно потому, что при 0° давление пара льда (4,6 мм) равно давлению пара воды. Эта температура и является точкой замерзания чистой: воды.

Если мы возьмем не чистую воду, а какой-нибудь раствор, давление его пара при 0° будет меньше 4,6 мм; поэтому лед, опущенный в такой раствор, быстро тает. Одновременное существование льда и раствора будет возможно только при температуре ниже 0°, и именно при такой, при которой давление их паров станет одинаковым. Другими словами, раствор будет замерзать при более низкой температуре, чем чистый растворитель.

Все эти соотношения становятся особенно ясными, если изобразить их графически, начертив кривые изменения давления паров с температурой. На рис. 69 линия аа 1 изображает кривую давления пара чистой воды, а линия bb 1 - кривую давления пара раствора. Так как при любой температуре давление пара раствора меньше давления пара чистой воды, линия bb 1 лежит ниже линии аа. Чтобы определить по этим кривым температуру кипения воды и раствора при каком-нибудь давлении, например при 760 мм, проведем из соответствующей точки оси ординат пря-мую, параллельную оси абсцисс. Из точек а 1 и b 1 пересечения этой прямой с кривыми давления пара опустим перпендикуляры на ось абсцисс. Температуры Т и Т 1 будут отвечать точкам кипения воды и раствора, так как при этих температурах давление их паров одинаково. Мы видим, что точка кипения раствора лежит выше точки кипения чистой воды.

Линия ас на рис. 69 изображает кривую давления пара льда. Мы уже говорили, что при температуре замерзания давление паров твердой и жидкой фаз растворителя или твердого растворителя и раствора должно быть одинаковым. Этому условию отвечают точки а и b пересечения кривых аа 1 и bb 1 с кривой ас. Температуры замерзания воды и раствора определяются как проекции точек а и b на ось абсцисс. В этом случае, как видно из рисунка, температуры Т и Т 1 расположены в обратном порядке, т. е. температура замерзания раствора меньше температуры замерзания воды.

При замерзании разбавленных растворов вначале выделяется в твердом виде чистый растворитель, например в случае водного раствора - чистый лед. Так как по мере выделения льда увеличивается, то температура замерзания не остается постоянной, а постепенно понижается. Однако выделение льда и понижение температуры замерзания происходят лишь до тех пор, пока не достигнет некоторой определенной для данного вещества величины, при которой весь раствор застывает в сплошную массу. Под микроскопом видно, что она состоит из тонких прослоек льда и растворенного вещества в твердом виде. Такая масса получила название эвтектики. Температура, при которой происходит ее образование, называется э в т е к т и ч е с к о и т е м п е р а т у р о й, а соответствующая - эвтектической концентрацией.

Возьмем, например, 10%-ный раствор поваренной соли и начнем его охлаждать. Первое появление кристаллов льда наблюдается около -7°. По мере выделения льда концентрация остающегося раствора увеличивается и температура замерзания падает все ниже и ниже. Наконец, когда концентрация NaCl достигает 24,42%, весь раствор застывает в сплошную белую массу - эвтектику. Это происходит при температуре -21,2°, которая и является, таким образом, эвтектической температурой для раствора поваренной соли.

Рис 70. Кривая замерзания растворов поваренной соли

Аналогичная картина наблюдается при охлаждении насыщенных растворов, т. е. таких растворов, в которых концентрация растворенного вещества выше эвтектической. Отличие в поведении этих растворов заключается в том, что при их охлаждении вначале выделяется не лед, а растворенное вещество в твердом виде. Например, из насыщенного при 20° раствора поваренной соли, содержащего 26,4% NaCl, при охлаждении выделяется соль. По мере выделения соли концентрация раствора уменьшается, и когда она становится равной 24,42%, происходит образование эвтектики (при температуре -21,2°). Таким образом, при охлаждении всякого насыщенного раствора после выделения некоторого количества кристаллов в конце концов образуется эвтектика.

На рис. 70 изображена кривая замерзания растворов поваренной соли различной концентрации. Из рисунка видно, что с увеличением концентрации температура замерзания понижается. Самой низкой точке кривой отвечает эвтектическая температура -21,2° и эвтектическая концентрация 24,42% NaCl. При дальнейшем увеличении концентрации температура замерзания (т. е. температура, при которой начинается выделение твердой фазы) снова повышается, но теперь из раствора выделяется в твердом виде уже не вода, а поваренная соль.

Эвтектическая температура является самой низкой из всех: возможных температур замерзания растворов данного вещества. Для различных веществ она весьма различна. Так, например, для: калийной селитры эвтектическая температура всего -2,9° (при эвтектической концентрации 10,9% KNO3), для поваренной соли -21,2°, для хлористого кальция -55°, для серной кислоты -75° и т. д.

Низкой эвтектической температурой поваренной соли объясняется таяние льда, посыпанного солью. Лед и соль не могут существовать вместе при температуре выше -21,2°; поэтому при смешивании с солью лед сейчас же начинает плавиться. Способностью льда поглощать при плавлении большое количество тепла пользуются для приготовления охлаждающих смесей, открытых Бойлем в 1665 г. и особенно тщательно изучавшихся Т. Е. Лови-цем. В 1792 г., смешивая снег с хлористым кальцием, Ловиц впервые достиг охлаждения до -50°. Понятно, что таким путем нельзя получить температуру ниже эвтектической.

Подобно тому, как при замерзании разбавленных растворов выделяющаяся твердая фаза состоит из чистого растворителя, так и при кипении растворов твердых веществ в жидкостях образующиеся пары состоят из чистого растворителя. Поэтому по мере выкипания жидкости концентрация раствора увеличивается и точка кипения повышается до тех пор, пока раствор не сделается насыщенным и не начнется кристаллизация. Как только начинается кристаллизация, концентрация раствора перестает изменяться и точка кипения становится постоянной.

С количественной стороны явления замерзания и кипения растворов были изучены Раулем, который экспериментальным путем установил следующие положения, известные под названием з а-конов Рауля:

1. Понижение точки замерзания пропорционально количеству вещества, растворенного в данном весовом количестве растворителя.

Так, например, раствор, содержащий в 100 г воды 5 г сахара, замерзает при минус 0,27°, а содержащий 10 г - при минус 0,54° и т. д.

2. Эквимолекулярные количества различных веществ, будучи растворены в одном и том же весовом количестве данного растворителя, понижают его точку замерзания на одной тоже число градусов.

Например, при растворении 0,1 граммолекулы сахара (34,2 г) в 1000 г воды точка замерзания понижается на 0,186°. Такое же понижение дает 0,1 граммолекулы глюкозы (18 г), 0,1 граммолекулы перекиси водорода (3,4 г) и т. д.

Понижение точки замерзания, соответствующее (по расчету) растворению 1 граммолекулы вещества в 1000 г растворителя (молекулярное понижение), есть величина постоянная для данного растворителя. Она называется криоскопической константой растворителя. Для различных растворителей криоскопические константы различны. Ниже приводим некоторые из них.

Криоскопические константы

Вода 1,86°

Бензол. . . . 5,1°

Уксусная кислота. . . 3,9°

Нафталин 6,9°

Совершенно аналогичные законы были установлены Раулем и в отношении повышения точек кипения. Молекулярное повышение точки кипения, т. е. повышение, вызываемое растворением 1 граммолекулы вещества в 1000 г растворителя, называется эбулиоскопической константой растворителя.

Эбулиоскопические константы

Вода … 0,52°

Бензол…2,53°

Эфир…1,82°

Хлороформ…3,61°

Математически законы Рауля могут быть выражены следующим уравнением:

∆t = K x C (1)

тде t -понижение точки замерзания или повышение точки кипения растворителя; С - число молей растворенного вещества, приходящееся на 1000 г растворителя; К -коэффициент пропорциональности, равный соответственно криоскопической или эбулиоскопической константе растворителя (при С=1 t = K). Так как число молей вещества равно его весу в граммах (т), деленному на (М), то, заменив в предыдущем

уравнении С на m: M, получим:

∆t = K(m:M) (2)

Законы Рауля применимы с теми же ограничениями, о которых мы говорили, излагая закон Вант-Гоффа: концентрированные растворы и растворы электролитов сильно отклоняются от этих законов.

Теоретическое обоснование законов Рауля было дано Вант-Гоффом, который указал на их связь с законом осмотического давления и вывел уравнения, позволяющие вычислить по понижению точки замерзания или по повышению точки кипения раствора.

На законах Рауля основаны очень удобные методы определения молекулярных весов растворенных веществ. Для определения берут навеску исследуемого вещества, растворяют ее в некотором количестве растворителя и устанавливают вызванное ею понижение температуры замерзания или повышение температуры кипения. По этим данным легко рассчитать растворенного вещества, если известна криоскопическая или эбулио-скопическая константа растворителя. Обратно, зная растворяемого вещества, таким же путем можно определить криоскопическую или эбулиоскопичеекую константу.

Хорошо известно, что растворы замерзают при более низкой температуре, чем чистый растворитель. Причиной понижения температуры замерзания (как и повышения температуры кипения) растворов является уменьшение давления пара, что можно проиллюстрировать с помощью диаграммы состояния воды (рис. 7.12).

Сплошные линии выражают границы фазовых полей для чистой воды. Напомним, что линия 1 отображает равновесие “жидкость - пар”. После добавления к воде нелетучего растворённого вещества давление пара над раствором (пунктирная линия 2 ) понижается при любой температуре.

Любая жидкость будет замерзать (отвердевать) тогда, когда давление пара над ней сравнивается с давлением пара над твёрдой фазой (в случае воды - надо льдом). Поэтому и температура замерзания раствора Т зам будет меньше, чем температура замерзания Т о зам чистого растворителя - воды.

Ф.М.Рауль (1883) опытным путём установил, что понижение температуры замерзания (иначе - депрессия замерзания )

DT зам = Т о зам - Т зам ,

вызываемое разными растворёнными веществами, взятыми в одинаковых молярных количествах, одинаково для данного растворителя. Так, для 0,1m водных растворов некоторых веществ наблюдаются следующие температуры затвердевания:

Вещество T зам , o C

Пероксид водорода H 2 O 2 - 0,186

Метиловый спирт CH 3 OH - 0,181

Этиловый спирт C 2 H 5 OH - 0,183

Сахароза C 12 H 22 O 11 - 0,186

Декстроза C 6 H 12 O 6 - 0,188

При различных концентрациях растворённых веществ DT зам пропор­цио­нально их моляльной концентрации m :

DT зам = К кр m (7.1)

Коэффициент пропорциональности К кр в уравнении (7.1), называемый криоскопической константой , представляет собой молярное понижение температуры замерзания. Эта величина численно равна понижению температуры замерзания раствора, содержащего 1 моль растворённого вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Криоскопическая константа является характеристикой растворителя, её величина не зависит от природы растворённого вещества.

Моляльная концентрацияможет быть выражена через массы растворённого вещества (b) и растворителя (а) в граммах (см. п. 7.3):


где М - молярная масса растворённого вещества (г/моль). Подставляя это выражение в уравнение (7.1), получим


Из этого уравнения следует одно очень важное обстоятельство, а именно: зная точный состав разбавленного раствора и измеряя температуры замерзания чистого растворителя и раствора, можно рассчитать молярную массу растворённого вещества:


Уравнение (7.2) лежит в основе крио­ско­пи­ческого (или криометрического )метода определения молярной массы веществ по понижению температуры замерзания их растворов.Криометрический метод находит широкое применение в лабораторной практике, в том числе и в фармации.

Принцип его заключается в следующем. Вначале измеряется температура плавления (или замерзания) точной навески а выбранного растворителя. Затем к растворителю добавляется точная навеска исследуемого вещества b и измеряется температура плавления полученной смеси (или температура замерзания, если вещество, выбранное в качестве растворителя, имеет низкую температуру плавления). Навеска растворённого вещества должна быть намного меньше, чем навеска растворителя, чтобы раствор получился разбавленным. Полученное значение DT зам подставляется в уравнение (7.2) и с его помощью вычисляется молярная масса исследуемого вещества. В простейшем случае в качестве растворителя может быть взята дистиллированная вода. Однако из-за малого значения криоскопической константы и низкой температуры замерзания, требующей применения криостатов или специальных охлаждающих смесей, вода применяется лишь для приблизительной оценки молярной массы веществ. Как правило, в особенности при изучении сложных органических веществ с большой молярной массой, в качестве растворителей выбираются другие вещества. При этом особое значение имеет камфора с её большой криоскопической константой. Главным условием для криометрического определения является полная растворимость исследуемого вещества в выбранном растворителе. Ниже приведены криоскопические константы некоторых веществ (при нормальном атмосферном давлении):

Вещество Т пл о С Криоскопическая

константа К кр

Бензол 5,5 5,12

Уксусная кислота 16,8 3,90

Циклогексан 6,5 20

Камфора 178,5 39,7

Криоскопический метод используется и для определения чистоты веществ. Это основано на том, что присутствие даже небольшой примеси снижает температуру плавления образца исследуемого вещества. Поэтому в химии (а так­же и в фармации) одним из критериев чистоты вещества является достижение максимальной температуры плавления, не возрастающей более после дополнительных операций очистки.

Ещё одно важное применение криоскопического эффекта - приготовление охлаждающих смесей. При определённом соотношении воды (или снега) и некоторых неорганических солей можно получить низкие температуры, удерживающиеся в течение достаточно длительного времени. Например, смесь, состоящая из 100 г снега и 143 г CaCl 2 ·6Н 2 О, позволяет получить температуру -55 о С.

В районах с холодным климатом в воду, используемую в автомобильных радиаторах, для предотвращения её замерзания зимой добавляются антифризы - такие вещества как спирт, глицерин или этиленгликоль. Лёд, намёрзший на проезжей части дорог и на тротуарах, легко плавится, когда его посыпают поваренной солью или золой, что тоже основано на криоскопическом эффекте. Следует только помнить, что неумеренное применение в этих целях соли может вызвать засоление близлежащих водоёмов и почв на их берегах и, как следствие, экологические нарушения.

Хорошо известно, что растворы замерзают при более низкой температуре, чем чистый растворитель. Причиной понижения температуры замерзания (как и повышения температуры кипения) растворов является уменьшение давления пара, что можно проиллюстрировать с помощью диаграммы состояния воды (рис. 7.12).

Сплошные линии выражают границы фазовых полей для чистой воды. Напомним, что линия 1 отображает равновесие “жидкость - пар”. После добавления к воде нелетучего растворённого вещества давление пара над раствором (пунктирная линия 2 ) понижается при любой температуре.

Любая жидкость будет замерзать (отвердевать) тогда, когда давление пара над ней сравнивается с давлением пара над твёрдой фазой (в случае воды - надо льдом). Поэтому и температура замерзания раствора Т зам будет меньше, чем температура замерзания Т о зам чистого растворителя - воды.

Ф.М.Рауль (1883) опытным путём установил, что понижение температуры замерзания (иначе - депрессия замерзания )

DT зам = Т о зам - Т зам ,

вызываемое разными растворёнными веществами, взятыми в одинаковых молярных количествах, одинаково для данного растворителя.

При различных концентрациях растворённых веществ DT зам пропор­цио­нально их моляльной концентрации m :

DT зам = К кр m (7.1)

Коэффициент пропорциональности К кр в уравнении (7.1), называемый криоскопической константой , представляет собой молярное понижение температуры замерзания. Эта величина численно равна понижению температуры замерзания раствора, содержащего 1 моль растворённого вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Криоскопическая константа является характеристикой растворителя, её величина не зависит от природы растворённого вещества.

Моляльная концентрацияможет быть выражена через массы растворённого вещества (b) и растворителя (а) в граммах (см. п. 7.3):


где М - молярная масса растворённого вещества (г/моль). Подставляя это выражение в уравнение (7.1), получим


Из этого уравнения следует одно очень важное обстоятельство, а именно: зная точный состав разбавленного раствора и измеряя температуры замерзания чистого растворителя и раствора, можно рассчитать молярную массу растворённого вещества:


Уравнение (7.2) лежит в основе крио­ско­пи­ческого (или криометрического )метода определения молярной массы веществ по понижению температуры замерзания их растворов.Криометрический метод находит широкое применение в лабораторной практике, в том числе и в фармации.

Повышение температуры кипения растворов. Эбуллиоскопическая константа. Эбуллиоскоическое определение молярной массы веществ.

Повышение температуры кипения растворов. Эбулиометрия

Кипение растворов, как и чистых жидкостей, начинается при температуре, соответствующей достижению общего давления пара, равного атмосферному. Из рассмотрения диаграммы состояния воды (рис. 7.12), следует, что в случае раствора это достигается при более высокой температуре, чем в случае чистой воды. Как и понижение температуры замерзания (плавления), повышение температуры кипения растворов по сравнению с чистым растворителем

DТ кип = Т кип - Т о кип

пропорционально моляльной концентрации растворенного вещества:

DТ кип = К э m

где К э - эбулиоскопическая (эбулиометрическая )константа или молярное повышение температуры кипения. Она численно равна повышению температуры кипения раствора, содержащего 1 моль растворенного вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Эбулиоскопическая константа, как и криоскопическая, является характеристикой растворителя, и её величина не зависит от природы растворённого вещества.

Повышение температуры кипения раствора может быть использовано для расчёта молярной массы растворённого вещества эбулиометрическим (эбулио­скопическим )методом по уравнению (7.3), подобному тому, которое используется в крио­метрии. Обозначения в уравнении (7.3) аналогичны обозначениям, использованным в уравнении (7.2).


DT зам а

Осмос. Осмотическое давление растворов неэлектролитов. Уравнение Вант-Гоффа.

Осмос - явление самопроизвольного перехода растворителя через полупроницаемую мембрану, разделяющую два раствора или раствор и чистый растворитель. Причиной осмоса является различие химических потенциалов растворителя по обе стороны полупроницаемой мембраны и стремление системы к выравниванию его концентрации в растворах, находящихся по обе стороны полупроницаемой мембраны.

Высота поднятия жидкости во внутреннем сосуде осмометра не зависит от природы растворённого вещества, но зависит от его концентрации и от температуры, а именно: чем больше концентрация вещества и чем выше температура, тем выше поднимается уровень жидкости. Осмос продолжается не бесконечно, через какое-то время он останавливается. Если мембрана разделяет два раствора с различной, но не намного отличающейся концентрацией, осмос будет идти до практически полного выравнивания концентрации каждого из компонентов по обе стороны мембраны. Если же мембрана разделяет раствор и чистый растворитель или два раствора с сильно отличающимися концентрациями, осмос остановится из-за того, что ему будет препятствовать гидростатическое давление поднимающегося столба жидкости. При остановке осмоса в системе наступает динамическое равновесие, характеризующееся равенством скоростей диффузии растворителя через мембрану в обоих направлениях. Вообще осмос можно приостановить любым давлением, направленным противоположно ему. Очевидно, что давление, необходимое для остановки осмоса, равно по величине тому давлению, которое оказывают при диффузии через мембрану молекулы растворителя. Это избыточное гидростатическое давление, возникающее в результате осмоса, называется осмотическим давлением . Осмотическое давление обозначается буквой p ; размерность его в системе СИ - Па, но на практике часто используется и внесистемная единица атм.

Если два раствора обладают одинаковым осмотическим давлением, их называют изотоническими . Когда осмотические давления растворов различны, тот раствор, у которого осмотическое давление больше, называется гипер­тони­ческим , тот у которого оно меньше - гипотоническим .

В 1887 г. Я.Вант-Гофф вывел уравнение, связывающее осмотическое давление раствора неэлектролита с его концентрацией:

p = CRT (7.4)

где С - молярная концентрация растворённого вещества.

Электрохимия. Основные понятия. Значение электрохимии для медицины и фармации, биологии.

Электрохимия - раздел физической химии, изучающий физико-хими­че­ские свойства ионных систем (растворов, расплавов или твёрдых электролитов), а также явления, происходящие на поверхностях раздела фаз с участием заряженных частиц - ионов и электронов.

Электрод - это электрический проводник, имеющий электронную проводимость (проводник 1-го рода) и находящийся в контакте с ионным проводником - электролитом (ионной жидкостью, ионизированным газом, твёрдым электролитом).

Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита.

Электри́ческая проводи́мость (электропроводность, проводимость) - способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Электроли́т - вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов.

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Законы электрохимии лежат в основе многих широко распространённых методов исследования и анализа (потенциометрия, кондуктометрия, полярогра­фия, амперометрия и др.). В химической и фармацевтической промышленности при получении многих веществ используются электролиз и электросинтез (например, электросинтезом получается глюконовая кислота - сырьё для синтеза применяемого в медицинской практике глюконата кальция). Химические источники тока - гальванические элементы, аккумуляторы - настолько широко используются, что без них уже невозможно представить практически ни одной области деятельности человека.

В медицинской практике используются физиотерапевтические электрохимические методы, например, электрофорез, или приборы, в частности, электрокардиостимуляторы.