Как посчитать пропорцию. Как высчитать процент от суммы с помощью пропорции

С точки зрения математики, пропорцией является равенство двух отношений. Взаимозависимость характерна для всех частей пропорции, также как и их неизменный результат. Понять, как составить пропорцию можно, ознакомившись со свойствами и формулой пропорции. Чтобы разобраться с принципом решения пропорции, достаточным будет рассмотреть один пример. Только непосредственно решая пропорции, можно легко и быстро обучиться этим навыкам. А данная статья поможет читателю в этом.

Свойства пропорции и формула

  1. Обращение пропорции. В случае, когда заданное равенство выглядит как 1a: 2b =3c: 4d, записывают 2b: 1a = 4d: 3c. (Причем 1a, 2b, 3c и 4d являются простыми числами, отличными от 0).
  2. Перемножение заданных членов пропорции крест-накрест. В буквенном выражении это имеет такой вид: 1a: 2b = 3c: 4d, а запись 1a4d = 2b3c будет ему равносильна. Таким образом, произведение крайних частей любой пропорции (числа по краям равенства) всегда является равным произведению средних частей (чисел, расположенных посредине равенства).
  3. При составлении пропорции может пригодиться и такое её свойство, как перестановка крайних и средних членов. Формулу равенства 1a: 2b = 3c: 4d, можно отобразить такими вариантами:
    • 1a: 3c = 2b: 4d (когда переставляют средние члены пропорции).
    • 4d: 2b = 3c: 1a (когда переставляют крайние члены пропорции).
  4. Прекрасно помогает в решении пропорции её свойство увеличения и уменьшения. При 1a: 2b = 3c: 4d, записывают:
    • (1a + 2b) : 2b = (3c + 4d) : 4d (равенство по увеличению пропорции).
    • (1a – 2b) : 2b = (3c – 4d) : 4d (равенство по уменьшению пропорции).
  5. Составить пропорцию можно сложением и вычитанием. Когда пропорция записана как 1a: 2b = 3c: 4d, тогда:
    • (1a + 3с) : (2b + 4d) = 1a: 2b = 3c: 4d (пропорция составлена сложением).
    • (1a – 3с) : (2b – 4d) = 1a: 2b = 3c: 4d (пропорция составлена вычитанием).
  6. Также, при решении пропорции, содержащей дробные или большие числа, можно разделить или умножить оба её члена на одинаковое число. К примеру, составные части пропорции 70:40=320:60, можно записать так: 10*(7:4=32:6).
  7. Вариант решения пропорции с процентами выглядит так. К примеру, записывают, 30=100%, 12=x. Теперь следует перемножить средние члены (12*100) и разделить на известный крайний (30). Таким образом, получается ответ: x=40%. Подобным способом можно при необходимости совершать перемножение известных крайних членов и делить их на заданное среднее число, получая искомый результат.

Если Вас интересует конкретная формула пропорции, то в самом простом и распространенном варианте пропорция представляет собой такое равенство (формулу): a/b = c/d, в нем a, b, c и d являются отличными от нуля четырьмя числами.

Составить пропорцию. В этой статье хочу поговорить с вами о пропорции. Понимать, что такое пропорция, уметь составлять её – это очень важно, она действительно спасает. Это вроде бы маленькая и незначительная «буковка» в большом алфавите математики, но без неё математика обречена быть хромой и неполноценной. Для начала напомню, что такое пропорция. Это равенство вида:

что тоже самое (это разная форма записи).

Пример:

Говорят – один относится к двум также, как четыре относится к восьми. То есть это равенство двух отношений (в данном примере отношения числовые).

Основное правило пропорции:

a:b=c:d

произведение крайних членов равно произведению средних

то есть

a∙d=b∙c

*Если какая-либо величина в пропорции неизвестна, ее всегда можно найти.

Если рассматривать форму записи вида:

то можно использовать следующее правило, его называют «правило креста»: записывается равенство произведений элементов (чисел или выражений) стоящих по диагонали

a∙d=b∙c

Как видите результат тот же.

Если три элемента пропорции известны, то мы всегда можем найти четвёртый.

Именно в этом суть пользы и необходимость пропорции при решении задач.

Давайте рассмотрим все варианты, где неизвестная величина х находится в «любом месте» пропорции, где a, b, c – числа:


Величина стоящая по диагонали от х записывается в знаменатель дроби, а известные величины стоящие по диагонали записываются в числитель, как произведение. Его запоминать не обязательно, вы и так всё верно вычислите, если усвоили основное правило пропорции.

Теперь главный вопрос, связанный с названием статьи. Когда пропорция спасает и где используется? Например:

1. Прежде всего это задачи на проценты. Мы рассматривали их в статьях " " и " ".

2. Многие формулы заданы в виде пропорций:

> теорема синусов

> отношение элементов в треугольнике

> теорема тангенсов

> теорема Фалеса и другие.

3. В задачах по геометрии в условии часто задаётся отношение сторон (других элементов) или площадей, например 1:2, 2:3 и прочие.

4. Перевод единиц измерения, причём пропорция используется для перевода единиц как в одной мере, так и для перевода из одной меры в другую:

— часы в минуты (и наоборот).

— единицы объёма, площади.

— длины, например мили в километры (и наоборот).

— градусы в радианы (и наоборот).

здесь без составления пропорции не обойтись.

Ключевой момент в том, что нужно правильно установить соответствие, рассмотрим простые примеры:

Необходимо определить число, которое составляет 35% от 700.

В задачах на проценты за 100% принимается та величина, с которой сравниваем. Неизвестное число обозначим как х. Установим соответствие:

Можно сказать, что семисот тридцати пяти соответствует 100 процентов.

Иксу соответствует 35 процентов. Значит,

700 – 100%

х – 35 %

Решаем

Ответ: 245

Переведём 50 минут в часы.

Мы знаем, что одному часу соответствует 60 минут. Обозначим соответсвие - x часов это 50 минут. Значит

1 – 60

х – 50

Решаем:

То есть 50 минут это пять шестых часа.

Ответ: 5/6

Николай Петрович проехал 3 километра. Сколько это будет в милях (учесть, что 1 миля это 1,6 км)?

Известно, что 1 миля это 1,6 километра. Число миль, которые проехал Николай Петрович примем за х. Можем установить соответствие:

Одной миле соответствует 1,6 километра.

Икс миль это три километра.

1 – 1,6

х – 3

Ответ: 1,875 миль

Вы знаете, что для перевода градусов в радианы (и обратно) существуют формулы. Я их не записываю, так как запоминать их считаю излишним, и так вам в памяти приходится держать много информации. Вы всегда сможете перевести градусы в радианы (и обратно), если воспользуетесь пропорцией.

Переведём 65 градусов в радианную меру.

Главное это запомнить, что 180 градусов это Пи радиан.

Обозначим искомую величину как х. Устанавливаем соответствие.

Ста восьмидесяти градусам соответствует Пи радиан.

Шестидесяти пяти градусам соответствует х радиан. изучить статью по этой теме на блоге. Материал в ней изложен несколько по иному, но принцип тот же. На этом закончу. Обязательно будет ещё что-нибудь интересненькое, не пропустите!

Если вспомнить само определение математики, то в нём есть такие слова: математика изучает количественные ОТНОШЕНИЯ (ОТНОШЕНИЯ - здесь ключевое слово). Как видите в самом определении математики заложена пропорция. Вообщем, математика без пропорции это не математика!!!

Всего доброго!

С уважением, Александр

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

§ 125. Понятие о пропорции.

Пропорцией называется равенство двух отношений. Вот примеры равенств, называемых пропорциями:

Примечание. Наименования величин в пропорциях не указаны.

Пропорции принято читать следующим образом: 2 так относится к 1 (единице), как 10 относится к 5 (первая пропорция). Можно читать иначе, например: 2 во столько раз больше 1, во сколько раз 10 больше 5. Третью пропорцию можно прочесть так: - 0,5 во столько раз меньше 2, во сколько раз 0,75 меньше 3.

Числа, входящие в пропорцию, называются членами пропорции . Значит, пропорция состоит из четырёх членов. Первый и последний члены, т. е. члены, стоящие по краям, называются крайними , а члены пропорции, находящиеся в середине, называются средними членами. Значит, в первой пропорции числа 2 и 5 будут крайними членами, а числа 1 и 10 - средними членами пропорции.

§ 126. Основное свойство пропорции.

Рассмотрим пропорцию:

Перемножим отдельно её крайние и средние члены. Произведение крайних 6 4 = 24, произведение средних 3 8 = 24.

Рассмотрим другую пропорцию: 10: 5 = 12: 6. Перемножим и здесь отдельно крайние и средние члены.

Произведение крайних 10 6 = 60, произведение средних 5 12 = 60.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних её членов.

В общем виде основное свойство пропорции записывается так: ad = bc .

Проверим его на нескольких пропорциях:

1) 12: 4 = 30: 10.

Пропорция эта верна, так как равны отношения, из которых она составлена. Вместе с тем, взяв произведение крайних членов пропорции (12 10) и произведение средних её членов (4 30), мы увидим, что они равны между собой, т. е.

12 10 = 4 30.

2) 1 / 2: 1 / 48 = 20: 5 / 6

Пропорция верна, в чём легко убедиться, упростив первое и второе отношения. Основное свойство пропорции примет вид:

1 / 2 5 / 6 = 1 / 48 20

Нетрудно убедиться в том, что если мы напишем такое равенство, у которого в левой части стоит произведение двух каких-нибудь чисел, а в правой части произведение двух других чисел, то из этих четырёх чисел можно составить пропорцию.

Пусть у нас имеется равенство, в которое входят четыре числа, попарно перемноженные:

эти четыре числа могут быть членами пропорции, которую нетрудно написать, если принять первое произведение за произведение крайних членов, а второе - за произведение средних. Изданного равенства можно составить, например, такую пропорцию:

Вообще, из равенства ad = bc можно получить следующие пропорции:

Проделайте самостоятельно следующее упражнение. Имея произведение двух пар чисел, напишите пропорцию, соответствующую каждому равенству:

а) 1 6 = 2 3;

б) 2 15 = б 5.

§ 127. Вычисление неизвестных членов пропорции.

Основное свойство пропорции позволяет вычислить любой из членов пропорции, если он неизвестен. Возьмём пропорцию:

х : 4 = 15: 3.

В этой пропорции неизвестен один крайний член. Мы знаем, что во всякой пропорции произведение крайних членов равно произведению средних членов. На этом основании мы можем написать:

x 3 = 4 15.

После умножения 4 на 15 мы можем переписать это равенство так:

х 3 = 60.

Рассмотрим это равенство. В нём первый сомножитель неизвестен, второй сомножитель известен и произведение известно. Мы знаем, что для нахождения неизвестного сомножителя достаточно произведение разделить на другой (известный) сомножитель. Тогда получится:

х = 60: 3, или х = 20.

Проверим найденный результат подстановкой числа 20 вместо х в данную пропорцию:

Пропорция верна.

Подумаем, какие действия нам пришлось выполнить для вычисления неизвестного крайнего члена пропорции. Из четырёх членов пропорции нам был неизвестен только один крайний; два средних и второй крайний были известны. Для нахождения крайнего члена пропорции мы сначала перемножили средние члены (4 и 15), а затем найденное произведение разделили на известный крайний член. Сейчас мы покажем, что действия не изменились бы, если бы искомый крайний член пропорции стоял не на первом месте, а на последнем. Возьмём пропорцию:

70: 10 = 21: х .

Запишем основное свойство пропорции: 70 х = 10 21.

Перемножив числа 10 и 21, перепишем равенство в таком виде:

70 х = 210.

Здесь неизвестен один сомножитель, для его вычисления достаточно произведение (210) разделить на другой сомножитель (70),

х = 210: 70; х = 3.

Таким образом, мы можем сказать, что каждый крайний член пропорции равен произведению средних, делённому на другой крайний.

Перейдём теперь к вычислению неизвестного среднего члена. Возьмём пропорцию:

30: х = 27: 9.

Напишем основное свойство пропорции:

30 9 = х 27.

Вычислим произведение 30 на 9 и переставим части последнего равенства:

х 27 = 270.

Найдём неизвестный сомножитель:

х = 270: 27, или х = 10.

Проверим подстановкой:

30: 10 = 27: 9. Пропорция верна.

Возьмём ещё одну пропорцию:

12: б = х : 8. Напишем основное свойство пропорции:

12 . 8 = 6 х . Перемножая 12 и 8 и переставляя части равенства, получим:

6 х = 96. Находим неизвестный сомножитель:

х = 96: 6, или х = 16.

Таким образом, каждый средний член пропорции равен произведению крайних, делённому на другой средний.

Найдите неизвестные члены следующих пропорций:

1) а : 3= 10:5; 3) 2: 1 / 2 = x : 5;

2) 8: b = 16: 4; 4) 4: 1 / 3 = 24: х .

Два последних правила в общем виде можно записать так:

1) Если пропорция имеет вид:

х: а = b: с , то

2) Если пропорция имеет вид:

а: х = b: с , то

§ 128. Упрощение пропорции и перестановка её членов.

В настоящем параграфе мы выведем правила, позволяющие упрощать пропорцию в том случае, когда в неё входят большие числа или дробные члены. K числу преобразований, не нарушающих пропорцию, относятся следующие:

1. Одновременное увеличение или уменьшение обоих членов любого отношения в одинаковое число раз.

П р и м е р. 40: 10 = 60: 15.

Увеличив в 3 раза оба члена первого отношения, получим:

120:30 = 60: 15.

Пропорция не нарушилась.

Уменьшив в 5 раз оба члена второго отношения, получим:

Получили опять правильную пропорцию.

2. Одновременное увеличение или уменьшение обоих предыдущих или обоих последующих членов в одинаковое число раз.

Пример. 16:8 = 40:20.

Увеличим в 2 раза предыдущие члены обоих отношений:

Получили правильную пропорцию.

Уменьшим в 4 раза последующие члены обоих отношений:

Пропорция не нарушилась.

Два полученных вывода можно кратко высказать так: Пропорция не нарушится, если мы одновременно увеличим или уменьшим в одинаковое число раз любой крайний член пропорции и любой средний.

Например, уменьшив в 4 раза 1-й крайний и 2-й средний члены пропорции 16:8 = 40:20, получим:

3. Одновременное увеличение или уменьшение всех членов пропорции в одинаковое число раз. Пример. 36:12 = 60:20. Увеличим все четыре числа в 2 раза:

Пропорция не нарушилась. Уменьшим все четыре числа в 4 раза:

Пропорция верна.

Перечисленные преобразования дают возможность, во-первых, упрощать пропорции, а во-вторых, освобождать их от дробных членов. Приведём примеры.

1) Пусть имеется пропорция:

200: 25 = 56: x .

В ней членами первого отношения являются сравнительно большие числа, и если бы мы пожелали найти значение х , то нам пришлось бы выполнять вычисления над этими числами; но мы знаем, что пропорция не нарушится, если оба члена отношения разделить на одно и то же число. Разделим каждый из них на 25. Пропорция примет вид:

8:1 = 56: x .

Мы получили, таким образом, более удобную пропорцию, из которой х можно найти в уме:

2) Возьмём пропорцию:

2: 1 / 2 = 20: 5.

В этой пропорции есть дробный член (1 / 2), от которого можно освободиться. Для этого придётся умножить этот член, например, на 2. Но о д и н средний член пропорции мы не имеем права увеличивать; нужно вместе с ним увеличить какой-нибудь из крайних членов; тогда пропорция не нарушится (на основании первых двух пунктов). Увеличим первый из крайних членов

(2 2) : (2 1 / 2) = 20: 5, или 4: 1 = 20:5.

Увеличим второй крайний член:

2: (2 1 / 2) = 20: (2 5), или 2: 1 = 20: 10.

Рассмотрим ещё три примера на освобождение пропорции от дробных членов.

Пример 1. 1 / 4: 3 / 8 = 20:30.

Приведём дроби к общему знаменателю:

2 / 8: 3 / 8 = 20: 30.

Умножив на 8 оба члена первого отношения, получим:

Пример 2. 12: 15 / 14 = 16: 10 / 7 . Приведём дроби к общему знаменателю:

12: 15 / 14 = 16: 20 / 14

Умножим оба последующих члена на 14, получим: 12:15 = 16:20.

Пример 3. 1 / 2: 1 / 48 = 20: 5 / 6 .

Умножим все члены пропорции на 48:

24: 1 = 960: 40.

При решении задач, в которых встречаются какие-нибудь пропорции, часто приходится для разных целей переставлять члены пропорции. Рассмотрим, какие перестановки являются законными, т. е. не нарушающими пропорции. Возьмём пропорцию:

3: 5 = 12: 20. (1)

Переставив в ней крайние члены, получим:

20: 5 = 12:3. (2)

Переставим теперь средние члены:

3:12 = 5: 20. (3)

Переставим одновременно и крайние, и средние члены:

20: 12 = 5: 3. (4)

Все эти пропорции верны. Теперь поставим первое отношение на место второго, а второе - на место первого. Получится пропорция:

12: 20 = 3: 5. (5)

В этой пропорции мы сделаем те же перестановки, какие делали раньше, т. е. переставим сначала крайние члены, затем средние и, наконец, одновременно и крайние, и средние. Получатся ещё три пропорции, которые тоже будут справедливыми:

5: 20 = 3: 12. (6)

12: 3 = 20: 5. (7)

5: 3 = 20: 12. (8)

Итак, из одной данной пропорции путём перестановки можно получить ещё 7 пропорций, что вместе с данной составляет 8 пропорций.

Особенно легко обнаруживается справедливость всех этих пропорций при буквенной записи. Полученные выше 8 пропорций принимают вид:

а: b = с: d; c: d = a: b ;

d: b = с: a; b: d = a: c;

a: c = b: d; c: a = d: b;

d: c = b: a; b: a = d: c.

Легко видеть, что в каждой из этих пропорций основное свойство принимает вид:

ad = bc.

Таким образом, указанные перестановки не нарушают справедливости пропорции и ими можно пользоваться в случае надобности.

(от лат. ргоро rtio — «соизмеримость» ).

Если соотношение а: b равно соотношению с: d , то тождество а: b = с: d называют пропорцией.

Если , то равенство сохранится и в следующих случаях:

(увеличение пропорции),

(уменьшение пропорции).

(составление пропорции сложением),

(составление пропорции вычитанием).

Обратим внимание, что составление пропорций — ещё один способ решения задач на проценты .

Например:

Олово производят из минерала, который называют касситеритом. Сколько тонн олова получат из 25 т касситерита, если он содержит 78 % олова?

Решение. Пусть получат х т олова. Взяв массу минерала за 100 % , запишем:

Решив 25.78 = 100х мы находим, что х = 19,5т.

Концепция пропорции тесно взаимосвязана с пропорциональностью . Пропорциональность - это неизменное соотношение двух величин друг к другу. Например, чем больше мы давим на педаль "газ" в машине, тем стремительнее она поедет.

Пропорциональность может быть прямой и обратной.

Прямая пропорциональность -рост одной величины влечет за собой рост другой.

Обратная пропорциональность существует тогда, когда рост одной величины в несколько раз, во столько же раз уменьшает другую. Продолжая предыдущий пример - обратная пропорциональность между нажатием на педаль "тормоз" и скоростью автомобиля - чем больше мы давим на тормоз, тем меньше скорость.

Пропорция в переводе с латинского языка (proportio) обозначает соотношение, выравненность частей, то есть равенство 2-х отношений. Знание вычислять пропорции зачастую бывает нужным в бытовых обстановках.

Инструкция

1. Легкой пример, когда нужно применить познания о решении пропорций: как вычислить 13% от вашей заработной платы – те самые проценты, которые уходят в Пенсионный фонд.

2. Напишите две строчки пропорции. В первой укажите всеобщую сумму зарплаты, которая представляет собой 100%, то есть, скажем, 15 000 (рублей) = 100%.

3. Строчкой ниже обозначьте ту сумму, которую надобно вычислить, знаком «Х», тот, что равен 13%, то есть Х = 13%.

4. Основное качество пропорции звучит так: произведение крайних членов пропорции равно произведению её средних членов. Это значит, что если вы помножите 15 000 на 13, то полученное число будет равняться значению Х, помноженному на 100. То есть перемножая члены пропорции крест накрест, вы получите идентичное значение.

5. Дабы вычислить, чему равен в финальном результате Х, умножьте 15 000 на 13 и поделите на 100. У вас получится, что 13 процентов от вашей зарплаты составляет 1950 рублей, таким образом, на руки вы получаете 15 000 – 1950 = 13 050 рублей чистой зарплаты.

6. Если вам надобно взять для пирога 100 граммов сахарной пудры, а вы знаете, что в одном граненом стакане помещается 140 граммов, составьте следующую пропорцию:100 = Х140 = 1

7. Подсчитайте, чему равен Х.Х = 100 х 1 / 140 = 0,7То есть вам потребуется 0,7 стакана сахарной пудры.

8. Бывает, что надобно вычислить целое, зная только процентную часть. Скажем, вы знаете, что 21 человек на предприятии, а это 5% от всеобщего числа работников, имеют среднее особое образование. Составьте пропорцию, дабы вычислить всеобщее число работников: Х (человек) = 100%, 21 = 5%. 21 х 100 / 5 = 420 человек.

9. Таким образом, записав в две строки имеющиеся данные, значение неведомого члена надобно находить так: помножьте между собой те члены пропорции, которые оказываются рядом и сверху незнакомого и поделите полученное число на значение, которое находится по диагонали от неведомого.А=БС=ДА = Б х С / Д; Б = А х Д / С; С = А х Д / Б; Д = С х Б / А

В геометрии существует несколько видов диагоналей. Диагональю именуется отрезок, тот, что соединяет две не соседние (не принадлежащие одной стороне либо одному ребру) вершины многоугольника либо многогранника. Различают так же диагонали граней, рассматриваемых как многоугольники и пространственные диагонали, соединяющие вершины различных граней многогранника. Существуют фигуры, у которых все диагонали равны между собой. На плоскости это верный пятиугольник и квадрат, в пространстве – положительный октаэдр.Зная длины сторон положительного многоугольника либо длины рёбер положительного многогранника дозволено вычислить длину всякий диагонали.

Инструкция

1. В любом верном многоугольнике углы равны между собой и вычисляются по формуле?? = (N — 2) * 180?/N, где?? – всякий из углов положительного многоугольника, N – число вершин.Зная углы при вершинах многоугольника, его диагонали дозволено вычислить, применяя теорему косинусовBE = v(AB? + AE? – 2 * AB * AE * cos??)

2. Если число вершин огромнее пяти, то для вычисления диагоналей, которые соединяют вершины, лежащие на различных сторонах дозволено воспользоваться той же теоремой косинусов для вычисления углов образующихся треугольников. Скажем, в шестиугольнике ABCDEF, для нахождения диагонали BE, нужно вычислить диагональ CE, после этого по той же теореме косинусов вычислить угол??, тогда?? = ?? — ??. Таким образом,BE = v(BC? + CE? – 2 * BC * CE * cos??).

Видео по теме

Обратите внимание!
Для вычисления пространственной диагонали многогранника, нужно возвести сечение, содержащее эту диагональ, вычислить углы при вершинах этого сечения, рассматривая сечение как плоский многоугольник. Тогда диагональ дозволено рассчитать по приведённой выше схеме.

Что представляет собой пропорция? С математической точки зрения, пропорция – это равенство 2-х отношений. Все части пропорции являются взаимозависимыми, а их итог непоколебим.

Вам понадобится

  • — Учебник алгебры за 7 класс.

Инструкция

1. Числа, которые находятся по краям равенства, именуются крайними. Соответственно, те, что находятся в середине – средними. Основным свойством пропорции является то, что крайние и средние части равенства дозволено перемножать между собой. Возьмите пропорцию 6:3=8:4. Перемножьте между собой крайние части, получится 6*4=24, произведение средних частей тоже будет равным 24. Отсель итог: произведение одних частей пропорции должно быть равно произведению других частей (крайние = средние).

2. Возьмите это качество пропорции на вооружение, вычислите незнакомый член уравнения x:4=15:3. Для того, дабы обнаружить неведомую часть пропорции, воспользуйтесь правилом равнозначности крайних и средних частей. Запишите это уравнение так: x*3=4*15. Решив это уравнение, вы получите правильную пропорцию.

3. Если пропорция состоит из огромных либо дробных чисел, ее дозволено упростить. Уменьшите оба члена отношения на идентичное число раз. Дабы не случилось нарушения пропорции, сделайте так: 40:10=60:15. Увеличьте оба члена отношения в три раза (120:30=60:15) либо уменьшите части второго отношения (40:10=12:3). Обе пропорции будут положительными.

4. Увеличивайте либо сокращайте пропорции только в идентичное число раз. Получив упрощенные реформирование, вы освобождаете пропорцию от дробных членов и упрощаете уравнение. Возьмите пример: 200:25=56:х. Дабы не исполнять вычисление с огромными числами, поделите их на одно и то же число. Если за это число взять 25, уравнение примет дальнейший вид: 8:1=56:х. Неведомую часть этой пропорции дозволено определить в уме, не прибегая к трудным вычислениям.

5. Части пропорций дозволено переставлять. Возьмите пропорцию 3:5=12:20. Переставьте крайние части (20:5=12:3), допустима и одновременная перегруппировка всех частей (20:12=5:3). Все пропорции будут правильными. Так из одной пропорции вы получите несколько, и все они будут положительными.

Обратите внимание!
Перегруппировка частей пропорций местами комфортна при решении задач.

Полезный совет
Основное качество всех пропорций: ab = bc.

В математике пропорцией называют равенство 2-х отношений. Для всех ее частей характерна взаимозависимость и постоянный итог. Довольно разглядеть один пример, дабы осознать тезис решения пропорций.

Инструкция

1. Изучите свойства пропорций. Числа по краям равенства называют крайними, а находящиеся посередине – средними. Основное качество пропорции заключается в том, что средние и крайние части равенства могут быть перемножены между собой. Довольно взять пропорцию 8:4=6:3. Если перемножить крайние части между собой, получится 8*3=24, как и при умножении средних чисел. Это обозначает, что произведение крайних частей пропорции неизменно равно произведению ее средних частей.

2. Возьмите на вооружение основное качество пропорции, дабы вычислить неведомый член в уравнении x:4=8:2. Для нахождения незнакомой части пропорции следует воспользоваться правилом равнозначности средних и крайних частей. Запишите уравнение в виде x*2=4*8, то есть x*2=32. Решите это уравнение (32/2), вы получите недостающий член пропорции (16).

3. Упростите пропорцию, если она состоит из дробных либо крупных чисел. Для этого поделите либо умножьте оба ее члена на идентичное число. Скажем, комбинированные части пропорции 80:20=120:30 дозволено упростить, поделив ее члены на 10 (8:2=12:3). Вы получите эквивалентное равенство. То же самое будет, если вы увеличите все члены пропорции, скажем, на 2, таким образом 160:40=240:60.

4. Испробуйте переставить части пропорций. К примеру, 6:10=24:40. Поменяйте местами крайние части (40:10=24:6) либо же единовременно сделайте перегруппировку всех частей (40:24=10:6). Все полученные пропорции будут эквивалентными. Так вы сумеете получить несколько равенств из одного.

5. Решите пропорцию с процентами. Запишите ее, скажем, в виде: 25=100%, 5=x. Сейчас необходимо перемножить средние члены (5*100) и поделить на знаменитый крайний (25). В результате получается, что x=20%. Таким же образом дозволено перемножать знаменитые крайние члены и разделять их на имеющийся средний, получая желанный итог.