Что делает радиация с человеком – отдаленные последствия облучения. Что такое изотопы? Всё идет из космоса

Радиация - невидима, неслышима, не имеет вкуса, цвета и запаха, а посему ужасна. Слово «радиация » вызывает паранойю, ужас или непонятное состояние, сильно напоминающее тревогу. При непосредственном воздействии радиации может развиться лучевая болезнь (в этот момент тревога перерастает в панику, потому что никто не знает, что это и как с этим бороться). Получается, радиация смертельна… но не всегда, иногда даже и полезна.

Так что же это такое? С чем её едят, эту радиацию, как пережить встречу с ней и куда позвонить, если она случайно пристанет на улице?

Что такое радиоактивность и радиация?

Радиоактивность — неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация , или ионизирующее излучение — это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

Какая бывает радиация?

Различают несколько видов радиации.

  • Альфа-частицы : относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
  • Бета-частицы — это просто электроны.
  • Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.
  • Нейтроны — электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.
  • Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце — один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества — например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию . Источники радиации — радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) — могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь . Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций как следствие облучения человека, то таковых еще ни разу не удалось обнаружить. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга «Жизнь после Чернобыля» шведских ученых С.Кулландера и Б.Ларсона ).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать » тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» — вместе с обычной грязью — может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача грязи приводит к ее быстрому разбавлению до безопасных пределов.

В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность . Измеряется в Беккерелях (Бк ), что соответствует 1 распаду в секунду . Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки ). Это — огромная величина: 1 Ки = 37000000000 (37*10^9) Бк .
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду .

Как было сказано выше, при этих распадах источник испускает ионизирующее излучение. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза . Часто измеряется в Рентгенах (Р ). Поскольку 1 Рентген — довольно большая величина, на практике удобнее пользоваться миллионной (мкР ) или тысячной (мР ) долями Рентгена.
Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы — микроРентген/час .

Мощность дозы, умноженная на время, называется дозой . Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).
Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы . Измеряются, соответственно, в Зивертах (Зв ) и Зивертах/час (Зв/час ). В быту можно считать, что 1 Зиверт = 100 Рентген . Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров — приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения .

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: «Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тысяч рентген при норме 20 ».
Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген — это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

Далее можно высказать следующие соображения. 10 тысяч рентген/час — достаточно большая величина. С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час! Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику. Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать, что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час. Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем сторублевые купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о «норме 20» можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.

Поэтому правильно сообщение, по-видимому, должно выглядеть так: «Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов , которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 — стабильные.
Например, у первого элемента таблицы Менделеева — водорода — существуют следующие изотопы:
водород Н-1 (стабильный)
дейтерий Н-2 (стабильный)
тритий Н-3 (радиоактивный, период полураспада 12 лет)

Радиоактивные изотопы обычно называют радионуклидами .

Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.
Абсолютно ошибочной является следующая трактовка понятия «период полураспада»: «если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час — вторая половина, и это вещество полностью исчезнет (распадется) «.

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида — свой период полураспада , он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно .
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

Что вокруг нас радиоактивно?

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

По происхождению радиоактивность делят на естественную (природную) и техногенную.

а) Естественная радиоактивность
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях — дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

б) Радон
Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении — это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.
Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.
Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз.
При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.
Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

в) Техногенная радиоактивность
Техногенная радиоактивность возникает вследствие человеческой деятельности.
Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.
Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.
Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.
И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.
Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

Как выглядят часто встречаемые радиоактивные предметы?

Согласно данным МосНПО «Радон», более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы. Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные ниже:

Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» — около 2 миллиРентген/час

Является ли компьютер источником радиации?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ); дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.
Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ. Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99 . Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.
Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission».

Нормы, действующие в России, изложены в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН СанПиН 2.2.2/2.4.1340-03), полный текст находится по адресу, а краткая выдержка о допустимых значениях всех видов излучений от видеомониторов — здесь.

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма. Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час, т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

Что такое нормальный радиационный фон?

На Земле существуют населенные области с повышенным радиационным фоном. Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.

Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория — в Индии (штат Керала) и Бразилии (штат Эспириту-Санту). Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер). Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует «нормального фона» как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.
В любом месте, даже для неосвоенных территорий, где «не ступала нога человека», радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать ТИПИЧНЫЕ значение фона на улице (открытой местности) — 8 — 12 мкР/час , в помещении — 15 — 20 мкР/час .

Какие бывают нормы радиоактивности?

В отношении радиоактивности существует очень много норм — нормируется буквально все. Во всех случаях проводится различие между населением и персоналом, т.е. лицами, чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.). Вне своего производства персонал относится к населению. Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения — той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон «О радиационной безопасности населения» № 3-ФЗ от 05.12.96 и «Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03».

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) воздух, продукты питания и вода
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются «Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)».

б) стройматериалы
Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь стоящихся жилых и общественных зданий (1 класс),
Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,
где АRa и АTh — удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак — удельная активность К-40 (Бк/кг).
Также применяются ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов» и ГОСТ Р 50801-95 «Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов».
Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение Аэфф м:
Аэфф м = Аэфф + DАэфф , где DАэфф — погрешность опеределения Аэфф .

в) помещения
Нормируется суммарное содержание радона и торона в воздухе помещений:
для новых зданий — не более 100 Бк/м3, для уже эксплуатируемых — не более 200 Бк/м3.
В городе Москве применяются МГСН 2.02-97 «Допустимые уровни ионизирующего излучения и радона на участках застройки».

г) медицинская диагностика
Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) компьютерная техника
Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН 2.2.2/2.4.1340-03).

Как защититься от радиации?

От источника радиации защищаются временем, расстоянием и веществом.

  • Временем — вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.
  • Расстоянием — благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.
  • Веществом — необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

Что касается главного источника облучения в помещениях — радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку.
Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы — благо их ассортимент ныне чрезвычайно богат.

Помогает ли от радиации алкоголь?

Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

Когда думать о радиации?

Всегда думать. Но в обыденной жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья. Например, в г. Москве и области фиксируется менее 50 подобных случаев в год, причем в большинстве случаев — благодаря постоянной планомерной работе профессиональных дозиметристов (сотрудников МосНПО «Радон» и ЦГСЭН Москвы) в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений (свалки, котлованы, склады металлолома).
Тем не менее именно в обыденной жизни иногда о радиоактивности следует вспомнить. Это полезно сделать:

  • при покупке квартиры, дома, земельного участка,
  • при планировании строительных и отделочных работ,
  • при выборе и приобретении строительных и отделочных материалов для квартиры или дома
  • при выборе материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.)

Следует все-таки отметить, что радиация — далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26 -м месте, а первые два места занимают тяжелые металлы и химические токсиканты .

Коварство многих болезней, вызываемых радиацией, состоит в длительном скрытом периоде. Лучевое поражение может развиться через несколько минут или спустя десятилетия. Иногда последствия облучения организма затрагивают его наследственный аппарат. В этом случае страдают уже последующие поколения.

Генетические последствия радиационного облучения

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

  • до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.
  • до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Неопухолевые последствия воздействия на организм радиации

Отсроченный эффект того, что радиация делает с человеком, часто выражается в функциональных и органических изменениях. К ним относятся:

  • Нарушения микроциркуляции из-за повреждения мелких сосудов, вследствие чего развивается тканевая гипоксия, страдают печень, почки, селезенка.
  • Патологические изменения, созданные дефицитом клеток в органах с низкой скоростью разрастания тканей (половые железы, соединительная ткань).
  • Расстройство регулирующих систем: ЦНС, эндокринной, сердечнососудистой.
  • Избыточное новообразование тканей эндокринных органов в результате снижения их функций, вызванного радиацией.

Канцерогенные последствия радиоактивного облучения

Раньше других проявляют себя такие болезни, вызываемые радиацией, как лейкозы. Они становятся виновниками летальных исходов уже через 10 лет после обучения. Среди людей, подвергшихся действию проникающей радиации после бомбардировок Хиросимы и Нагасаки, смертность от лейкозов пошла на убыль только после 1970 года. Согласно данным НКДАР ООН (Научного комитета по действию атомной радиации), вероятность заболевания лейкозом составляет 1 шанс из 500 при получении дозы облучения 1 Гр.

Еще чаще развивается рак щитовидной железы - по информации того же НКДАР он поражает 10 человек из каждой тысячи облученных (в расчете на индивидуальную поглощенную дозу 1 Гр). С такой же частотой развивается и рак груди у женщин. Правда, оба этих заболевания, несмотря на злокачественность, приводят к смерти далеко не всегда: выжить удается 9 из 10 человек, перенесших рак щитовидной железы, и каждой второй заболевшей раком молочной железы женщине.

Одно из самых грозных отдаленных последствий, которое проникающая радиация может вызвать у людей, - это рак легких. Согласно исследованиям, наиболее высока вероятность заболеть им у шахтеров урановых родников - в 4-7 раз выше, чем у тех, кто пережил атомную бомбардировку. По мнению специалистов НКДАР, одна из причин этого - возраст шахтеров, которые в подавляющем большинстве старше облученного населения японских городов.

В других тканях организма, подвергшегося радиоактивной атаке, опухоли развиваются гораздо реже. Рак желудка или печени встречается не чаще 1 случая на 1000 при получении индивидуальной дозы в 1 Гр, рак иных органов фиксируется с частотностью 0,2-0,5 случая на 1000.

Снижение продолжительности жизни

Единого мнения о безусловном влиянии радиации на среднюю продолжительность жизни человека (СПЖ) у современных ученых нет. Но опыты на грызунах показали, что связь между облучением и более ранней смертностью есть. После получения дозы 1 Гр продолжительность жизни грызунов сокращалась на 1-5 %. Длительное воздействие гамма-излучения приводило к сокращению СПЖ при накоплении суммарной дозы 2 Гр. Причем смерть в каждом случае наступала от разных болезней, вызываемых радиацией: склеротических изменений, злокачественных новообразований, лейкозов и других патологий.

НКДАР ООН также рассматривал вопрос уменьшения продолжительности жизни как отдаленного последствия облучения. В результате специалисты пришли к выводу: при низких и умеренных дозах такая связь сомнительна, но интенсивное облучение проникающей радиацией действительно может вызывать у людей заболевания, сокращающие жизнь.

По оценкам разных ученых сокращение СПЖ человека составляет.

Радиация предстает перед нами в образе
«незримого, коварного и смертельно опасного врага, подстерегающего на каждом шагу».
Её нельзя увидеть, нельзя пощупать, она незаметна..

Это вызывает у людей, некий трепет и ужас, особенно при отсутствии понимания, что же такое собственно это такое..
Более ясное представление о том, что же такое радиация,
о бытовой опасности радиации и радиоактивности вы будете иметь, прочитав данную статью..

РАДИОАКТИВНОСТЬ, РАДИАЦИЯ И РАДИАЦИОННЫЙ ФОН:

1. ЧТО ТАКОЕ РАДИОАКТИВНОСТЬ И РАДИАЦИЯ.

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

2. КАКАЯ БЫВАЕТ РАДИАЦИЯ?

Различают несколько видов радиации:

— Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.

— Бета-частицы - это просто электроны.

— Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

— Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.
Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

* Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток.

Но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

* Следует различать радиоактивность и радиацию.
Источники радиации - радиоактивные вещества или ядерно-технические установки
(реакторы, ускорители, рентген.оборудование и т.п.) — могут существовать значительное время,
а радиация существует лишь до момента своего поглощения в каком-либо веществе.

3. К ЧЕМУ МОЖЕТ ПРИВЕСТИ ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.

Облучение может вызвать:
— нарушение обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций, как следствие облучения человека, то таковых еще ни разу не удалось обнаружить.
Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга "Жизнь после Чернобыля" шведских ученых С.Кулландера и Б.Ларсона).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

4. КАК РАДИАЦИЯ МОЖЕТ ПОПАСТЬ В ОРГАНИЗМ?



Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике.
В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

5. ПЕРЕДАЕТСЯ ЛИ РАДИАЦИЯ КАК БОЛЕЗНЬ?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» - вместе с обычной грязью - может быть передана при контакте другому человеку.

Передача грязи приводит к ее быстрому разбавлению до безопасных пределов, В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии)

6. В КАКИХ ЕДИНИЦАХ ИЗМЕРЯЕТСЯ РАДИОАКТИВНОСТЬ?


Мерой радиоактивности служит активность.
Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду.
Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки).
Это - огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает ионизирующее излучения.
Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза.
Она часто измеряется в Рентгенах (Р).
Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы.
Единица измерения мощности экспозиционной дозы - микроРентген/час.

Мощность дозы, умноженная на время, называется дозой.
Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).


Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час.
В быту можно считать, что 1 Зиверт = 100 Рентген.
Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри,
(для определенности рассматриваем источник цезий-137), на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час.
Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: "Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тыс.рентген при норме 20 "

* Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген - это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

* Во-вторых, можно высказать следующие соображения:
10 тысяч рентген/час - достаточно большая величина.
С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час!

Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику.
Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать,
что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час.
Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем 100р- купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о "норме 20" можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.
Кстати, такой нормы нет.

Поэтому правильно сообщение, по-видимому, должно выглядеть так:
«Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том,что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

7. ЧТО ТАКОЕ ИЗОТОПЫ?

В таблице Менделеева более 100 химических элементов.
Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента.
Известно около 2000 изотопов, из которых около 300 - стабильные.
Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:
- водород Н-1 (стабильный),
- дейтерий Н-2 (стабильный),
- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами.

8. ЧТО ТАКОЕ ПЕРИОД ПОЛУРАСПАДА?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия "период полураспада" :
"если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда.
В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом.
Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

ПО ПРОИСХОЖДЕНИЮ РАДИОАКТИВНОСТЬ ДЕЛЯТ НА ЕСТЕСТВЕННУЮ (природную) И ТЕХНОГЕННУЮ:

9. ЧТО ВОКРУГ НАС РАДИОАКТИВНО?
(Воздействие на человека тех или иных источников радиации поможет оценить диаграмма 1 - см. рис внизу)

а) ЕСТЕСТВЕННАЯ РАДИОАКТИВНОСТЬ.
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.

Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях - дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне,
в стройматериалах, из которых они построены, содержится природная радиоактивность.

б) РАДОН (вносит существенный вклад в облучение человека как сам, так и продукты его распада)

Основным источником этого радиоактивного инертного газа является земная кора.
Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях.
Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона.

Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.

Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Основную часть дозы облучения от радона человек получает, находясь в закрытом,
непроветриваемом помещении;
регулярное проветривание может снизить концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Сравнить мощность излучения различных источников радона поможет диаграмма 2.
(см рис ниже - Сравнительная мощность различных источников радона)

в) ТЕХНОГЕННАЯ РАДИОАКТИВНОСТЬ.:

Техногенная радиоактивность возникает вследствие человеческой деятельности

Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона.

Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40.

Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.

Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.

И, конечно, свой вклад дают испытания ядерного оружия(ЯО), предприятия атомной энергетики и промышленности.

* Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п.
Такие ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.

Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

10. РАДИАЦИОННАЯ ОБСТАНОВКА В РОССИИ?

Радиационная обстановка в разных регионах России освещается в государственном ежегодном документе "О состоянии окружающей природной среды Российской Федерации".
Также доступна информация о радиационной обстановке в отдельных регионах.


11.. КАК ВЫГЛЯДЯТ ЧАСТО ВСТРЕЧАЕМЫЕ РАДИОАКТИВНЫЕ ПРЕДМЕТЫ?

Согласно данным МосНПО "Радон", более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы.

Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.
Похожая ситуация и в С.-Петербурге.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные на рисунках. прикрепленных к статье(описание смотри под рисунками), а именно:

Радиоактивный переключатель (тумблер) :
Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» - около 2 миллиРентген/час.

Авиационные часы АЧС с радиоактивным циферблатом:
Часы с циферблатом и стрелками выпуска до 1962 г., флуоресцирующими благодаря радиоактивной краске. Мощность дозы вблизи часов около 300 микроРентген/час.

— Радиоактивные трубы из металлолома:
Обрезки отработавших труб из нержавеющей стали, применявшихся в технологических процессах на предприятии атомной промышленности, но каким-то образом попавшие в металлолом. Мощность дозы может быть весьма значительной.

— Переносной контейнер с источником радиации внутри:
Переносной свинцовый контейнер, внутри которого может находиться миниатюрная металлическая капсула, содержащая радиоактивный источник (например, цезий-137 или кобальт-60). Мощность дозы от источника без контейнера может быть очень большой.

12.. ЯВЛЯЕТСЯ ЛИ КОМПЬЮТЕР ИСТОЧНИКОМ РАДИАЦИИ?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ);
дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.

Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ.

Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99. Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.

Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission»

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма.
Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час,
т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

13. ЧТО ТАКОЕ НОРМАЛЬНЫЙ РАДИАЦИОННЫЙ ФОН или НОРМАЛЬНЫЙ УРОВЕНЬ РАДИАЦИИ?

На Земле существуют населенные области с повышенным радиационным фоном.

Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.
Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория - в Индии (штат Керала) и Бразилии (штат Эспириту-Санту).
Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер).
Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует "нормального фона" как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где "не ступала нога человека",
радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать
ТИПИЧНЫЕ ЗНАЧЕНИЯ ФОНА НА УЛИЦЕ (открытой местности) - 8 - 12 мкР/час,
В ПОМЕЩЕНИИ - 15 - 20 мкР/час.

Нормы, действующие в России, изложены в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН СанПиН 2.2.2/2.4.1340-03)

14.. КАКИЕ БЫВАЮТ НОРМЫ РАДИОАКТИВНОСТИ?

В отношении радиоактивности существует очень много норм - нормируется буквально все.
Во всех случаях проводится различие между населением и персоналом, т.е. лицами,
чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.).
Вне своего производства персонал относится к населению.
Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения - той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон "О радиационной безопасности населения" № 3-ФЗ от 05.12.96 и "Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03".

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) ВОЗДУХ, ПРОДУКТЫ ПИТАНИЯ, ВОДА:
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются "Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)".

б) СТРОЙМАТЕРИАЛЫ

Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь строящихся жилых и общественных зданий (1 класс),

Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,

где АRa и АTh - удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак - удельная активность К-40 (Бк/кг).

* Также применяются ГОСТ 30108-94:
"Материалы и изделия строительные.
Определение удельной эффективной активности естественных радионуклидов" и ГОСТ Р 50801-95 "
Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов".

Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение

Аэфф м = Аэфф + DАэфф, где DАэфф - погрешность определения Аэфф.

в) ПОМЕЩЕНИЯ

Нормируется суммарное содержание радона и торона в воздухе помещений:

для новых зданий - не более 100 Бк/м3, для уже эксплуатируемых - не более 200 Бк/м3.

г) МЕДИЦИНСКАЯ ДИАГНОСТИКА

Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) КОМПЬЮТЕРНАЯ ТЕХНИКА

Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы" (СанПиН 2.2.2/2.4.1340-03).

15. КАК ЗАЩИТИТЬСЯ ОТ РАДИАЦИИ? ПОМОГАЕТ ЛИ ОТ РАДИАЦИИ АЛКОГОЛЬ?

От источника радиации защищаются временем, расстоянием и веществом.

— Временем - в следствии того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.

— Расстоянием - благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния).
Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час,
то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.

— Веществом - необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

* Что касается главного источника облучения в помещениях - радона и продуктов его распада,
то регулярное проветривание позволяет значительно уменьшить его дозовую нагрузку.

* Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы - благо их ассортимент ныне чрезвычайно богат.

* Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

* Существуют также и народные рецепты помогающие бороться и очищать организм от радиации.
у них вы узнаете уже сегодня)

16. КОГДА ДУМАТЬ О РАДИАЦИИ?

В обыденной мирной, пока еще, жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья.
в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений - (свалки, котлованы, склады металлолома).

Тем не менее именно в обыденной жизни о радиоактивности следует вспомнить.
Это полезно сделать:

При покупке квартиры, дома, земельного участка,
--при планировании строительных и отделочных работ,
--при выборе и приобретении строительных и отделочных материалов для квартиры или дома,
а также материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.).

—к тому же мы всегда должны помнить о вероятности БП

Следует все-таки отметить, что радиация - далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26-м месте, а первые два места занимают тяжелые металлы и химические токсины.

СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЯ РАДИАЦИИ


Дозиметры. Эти приборы с каждым днем приобретают все большую популярность.

После аварии в Чернобыле, тема радиации перестала быть интересом только узкого круга специалистов.

Многие люди стали больше беспокоится об опасности, которую она может в себе нести. Сейчас уже нельзя до конца быть уверенным в чистоте продуктов питания, которыми торгуют на рынках и в магазинах, а также в безопасности воды в природных источниках.

Данный прибор для измерения перестал быть экзотикой и стал одним из бытовых приборов, который помогает определить безопасность нахождения в том или ином месте, а также " норму "(в этой области) приобретаемых стройматериалов, вещей, продуктов и т.п.

а потому давайте разберемся


1. ЧТО ИЗМЕРЯЕТ И ЧЕГО НЕ ИЗМЕРЯЕТ ДОЗИМЕТР.

Дозиметр измеряет мощность дозы ионизирующего излучения непосредственно в том месте, где он находится.

Основное предназначение бытового дозиметра - измерение мощности дозы в том месте, где этот дозиметр находится (в руках человека, на грунте и т.д.) и проверка тем самым на радиоактивность подозрительных предметов.

Однако скорее всего, Вам удастся заметить только достаточно серьезные повышения мощности дозы.

Поэтому индивидуальный дозиметр поможет прежде всего тем, кто часто бывает в районах, загрязненных в результате аварии на ЧАЭС (как правило, все эти места хорошо известны).

Кроме того, такой прибор может быть полезен в незнакомой удаленной от цивилизации местности (например при сборе ягод и грибов в достаточно "диких" местах), при выборе места для строительства дома, для предварительной проверки привозного грунта при ландшафтном благоустройстве.

Повторим, однако, что в этих случаях полезен он будет только при весьма существенных радиоактивных загрязнениях, которые встречаются нечасто.

Не очень сильные, но, тем не менее, небезопасные загрязнения бытовым дозиметром обнаружить очень трудно. Для этого нужны совершенно другие методы, которые могут использовать только специалисты.

Относительно возможности проверять с помощью бытового дозиметра соответствие радиационных параметров установленным нормам можно сказать следующее.

Дозовые показатели (мощность дозы в помещениях, мощность дозы на местности) для отдельных точек проверить можно. Однако бытовым дозиметром очень трудно обследовать все помещение и добиться уверенности в том, что не пропущен локальный источник радиоактивности.

Почти бесполезно пытаться измерять радиоактивность продуктов питания или стройматериалов с помощью бытового дозиметра.

Дозиметр способен выявить разве что ОЧЕНЬ СИЛЬНО загрязненные продукты или строительные материалы, содержание радиоактивности в которых в десятки раз превосходит допустимые нормы.

Напомним, что для продуктов и строительных материалов нормируется не мощность дозы, а содержание радионуклидов, а дозиметр принципиально не позволяет измерять этот параметр.
Здесь опять же нужны другие методы и работа специалистов.

2. КАК ПРАВИЛЬНО ПОЛЬЗОВАТЬСЯ ДОЗИМЕТРОМ?

Следует пользоваться дозиметром в соответствии с прилагаемой к нему инструкцией.

Также необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон.

Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации.

Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.

В том, что показания дозиметра в квартире больше в 1,5 - 2 раза, чем на улице, нет ничего необычного.

Кроме того, необходимо учитывать, что при измерениях на "уровне фона" в одном и том же месте прибор может показать, например, 8, 15 и 10 мкР/час.
Поэтому для получения достоверного результата рекомендуют провести несколько измерений и затем вычислить среднее арифметическое. В нашем примере среднее составит (8+15+10)/3 = 11 мкР/час.

3. КАКИЕ БЫВАЮТ ДОЗИМЕТРЫ?

* В продаже можно встретить как бытовые, так и профессиональные дозиметры.
Последние имеют целый ряд принципиальных преимуществ. Однако, эти приборы весьма дороги (в десять и более раз дороже бытового дозиметра), а ситуации, когда эти преимущества могут быть реализованы, крайне редки в быту. Поэтому приобретать надо бытовой дозиметр.

Особо следует сказать о радиометрах для измерения активности радона: хотя они бывают только в профессиональном исполнении, но их использование в быту может быть оправданным.

* Подавляющее большинство дозиметров являются прямопоказывающими, т.е. с их помощью можно получить результат сразу после измерения.

Существуют и непрямопоказывающие дозиметры, не имеющие никаких устройств питания и индикации, исключительно компактные (часто в виде брелока).
Их предназначение - индивидуальный дозиметрический контроль на радиационно-опасных объектах и в медицине.

Поскольку провести перезарядку такого дозиметра или считать его показания можно только с помощью специальной стационарной аппаратуры, его нельзя использовать для принятия оперативных решений.

* Дозиметры бывают беспороговые и пороговые. Последние позволяют обнаружить только превышение редустановленного изготовителем нормативного уровня радиации по принципу "да-нет" и благодаря этому просты и надежны в эксплуатации, стоят дешевле беспороговых примерно в 1,5 - 2 раза.

Как правило, беспороговые дозиметры можно эксплуатировать и в пороговом режиме.

4. БЫТОВЫЕ ДОЗИМЕТРЫ В ОСНОВНОМ РАЗЛИЧАЮТСЯ ПО СЛЕДУЮЩИМ ПАРАМЕТРАМ:

— типы регистрируемых излучений - только гамма, или гамма и бета;

— тип блока детектирования - газоразрядный счетчик (также известен как счетчик Гейгера) или сцинтилляционный кристалл/пластмасса; количество газоразрядных счетчиков варьируется от 1 до 4-х;

— размещение блока детектирования - выносной или встроенный;

— наличие цифрового и/или звукового индикатора;

— время одного измерения - от 3 до 40 секунд;

— наличие тех или иных режимов измерения и самодиагностики;

— габариты и вес;

— цена, в зависимости от комбинации вышеперечисленных параметров.

5. ЧТО ДЕЛАТЬ, ЕСЛИ ДОЗИМЕТР "ЗАШКАЛИВАЕТ" ИЛИ ЕГО ОКАЗАНИЯ НЕОБЫЧНО БОЛЬШИЕ?

— Убедиться, что при удалении дозиметра от того места, где его "зашкаливает", показания прибора приходят в норму.

— Убедиться, что дозиметр исправен (большинство приборов такого рода имеют специальный режим самодиагностики).

— Нормальную работоспособность электрической схемы дозиметра могут частично или полностью нарушать замыкания, протечки батареек, сильные внешние электромагнитные поля. Если есть возможность, желательно продублировать измерения с помощью другого дозиметра, желательно другого типа.

Если же вы уверены, что обнаружили источник или участок радиоактивного загрязнения, НИ В КОЕМ СЛУЧАЕ не следует пытаться самостоятельно избавиться от него (выбросить, закопать или спрятать).

Следует как-то обозначить место своей находки, и обязательно сообщить о ней службам, в чьи обязанности входит обнаружение, идентификация и захоронение бесхозных радиоактивных источников.

6. КУДА ЗВОНИТЬ В СЛУЧАЕ ОБНАРУЖЕНИЯ ВЫСОКОГО УРОВНЯ РАДИАЦИИ?

Главное управление МЧС РФ по РС(Я), оперативный дежурный: тел: /4112/ 42-49-97
-Управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по РС(Я) тел: /4112/ 35-16-45, факс: /4112/ 35-09-55
-Территориальные органы Министерства охраны природы РС(Я)

(заранее узнайте номера телефонов для таких случаев в своем регионе)

7. КОГДА СТОИТ ОБРАТИТСЯ К СПЕЦИАЛИСТАМ ДЛЯ ИЗМЕРЕНИЯ РАДИАЦИИ?

Подходы типа "Радиоактивность - это очень просто!" или "Дозиметрия - своими руками" себя не оправдывают. В большинстве случаев непрофессионал не может правильно трактовать число, высветившееся на табло дозиметра в результате проведенного замера. Соответственно, он не может самостоятельно принять решение о радиационной безопасности подозрительного объекта, рядом с которым этот замер был проведен.

Исключение составляет ситуация, когда дозиметр показал очень большое число. Тут все ясно: отойти подальше, проверить показания дозиметра вдали от места аномального показания и, если показания стали обычными, то, не возвращаясь к "плохому месту", быстро уведомить соответствующие службы.

К специалистам (в соответствующим образом аккредитованные лаборатории) необходимо обращаться в тех случаях, когда необходимо ОФИЦИАЛЬНОЕ заключение о соответствии того или иного товара действующим нормам радиационной безопасности.

Такие заключения обязательны для продуктов, которые могут концентрировать в себе радиоактивность с места произрастания: ягоды и сушеные грибы, мед, лекарственные травы. При этом для товарных партий продуктов радиационный контроль обойдется продавцу лишь в доли процента от стоимости партии.

При покупке земельного участка или квартиры не помешает убедиться в соответствии их естественной радиоактивности действующим нормам, а также в отсутствии техногенного радиационного загрязнения.

Если вы все таки решили приобрести себе индивидуальный бытовой дозиметр, серьезно отнеситесь к этому вопросу.

(Лаборатория радиационного контроля ЛРК-1 МИФИ)

Радиация – это невидимое человеческому глазу излучение, которое тем не менее оказывает мощнейшее влияние на организм. К сожалению, последствия облучения для человека исключительно негативные.

Изначально излучение влияет на организм извне. Оно исходит от естественных радиоактивных элементов, которые находятся в земле, а также попадает на планету из космоса. Также внешнее облучение исходит в микродозах от стройматериалов, медицинских рентгеновских аппаратов. Большие дозы облучения можно обнаружить на ядерных электростанциях, специальных физических лабораториях и урановых рудниках. Также крайне опасны полигоны испытания ядерного оружия и места захоронения радиационных отходов.

В определенной степени наша кожа, одежда и даже дома защищают от вышеперечисленных источников излучения. Но главная опасность радиации заключается в том, что облучение может быть не только внешним, но и внутренним.

Радиоактивные элементы могут проникать с воздухом и водой, через порезы в коже и даже сквозь ткани организма. В этом случае источник облучения действует намного дольше – пока он не будет выведен из тела человека. От него не защититься свинцовой плитой и невозможно уехать подальше, что делает ситуацию еще опаснее.

Дозировка облучения

Для того чтобы определить мощность облучения и степень воздействия радиации на живые организмы было придумано несколько шкал измерения. В первую очередь измеряется мощность источника излучения в Греях и Радах. Здесь все достаточно просто. 1 Гр=100Р. Именно так определяется уровень облучения с помощью счетчика Гейгера. Также используется шкала Рентген.

Но не стоит считать, что данные показания достоверно указывают на степень опасности для здоровья. Недостаточно знать мощность излучения. Влияние радиации на организм человека меняется также в зависимости от типа излучения. Всего их 3:

  1. Альфа. Это тяжелые радиоактивные частицы – нейтроны и протоны, которые несут наибольший вред для человека. Но они обладают малой пробивной силой и не способны проникнуть даже сквозь верхние слои кожи. Но при наличии ран или взвеси частиц в воздухе,
  2. Бета. Это радиоактивные электроны. Их пробивная способность – 2 см. кожи.
  3. Гамма. Это фотоны. Они свободно пронизывают тело человека, и защититься возможно только с помощью свинца или толстого слоя бетона.

Радиационное воздействие происходит на молекулярном уровне. Облучение приводит к образованию в клетках тела свободных радикалов, которые начинают разрушать окружающие вещества. Но, учитывая уникальность каждого организма и неравномерную чувствительность органов к действию радиации на человека, ученым пришлось ввести понятие эквивалентной дозы.

Для определения, чем опасна радиация в той или иной дозе, мощность излучения в Радах, Рентгенах и Греях умножается на коэффициент качества.

Для Альфа-излучения он равен 20, а для Бета и Гамма – 1. Рентгеновские лучи также имеют коэффициент 1. Полученный результат измеряется в Бэрах и Зивертах. При коэффициенте равном единице, 1 Бэр равен одному Раду или Рентгену, а 1 Зиверт равен одному Грею или 100 Бэрам.

Чтобы определить степень воздействия эквивалентной дозы на организм человека пришлось ввести еще один коэффициент риска. Для каждого органа он отличается, в зависимости от того как влияет радиация на отдельные ткани тела. Для организма в целом он равен единице. Благодаря этому получилось составить шкалу опасности радиации и ее влияния на человека при однократном воздействии:

  • 100 Зиверт. Это быстрая смерть. Через несколько часов, а в лучшем случае дней нервная система организма прекращает свою деятельность.
  • 10-50 – это смертельная доза, в результате которой человек умрет от многочисленных внутренних кровоизлияний спустя несколько недель мучений.
  • 4-5 Зиверт – -смертность составляет около 50%. Из-за поражения костного мозга и нарушения процесса кроветворения организм погибает спустя пару месяцев или меньше.
  • 1 Зиверт. Именно с этой дозы начинается лучевая болезнь.
  • 0,75 Зиверта. Кратковременные изменения в составе крови.
  • 0,5 – эта доза считается достаточной, чтобы стать причиной развития онкозаболеваний. Но других симптомов обычно не бывает.
  • 0,3 Зиверта. Это мощность аппарата при получении рентгеновского снимка желудка.
  • 0,2 Зиверта. Это безопасный уровень излучения, допустимого при работе с радиоактивными материалами.
  • 0,1 – при данном радиационном фоне добывается уран.
  • 0,05 Зиверта. Норма фонового облучения медицинской аппаратурой.
  • 0,005 Зиверта. Допустимый уровень радиации возле АЭС. Также это годовая норма облучения для гражданского населения.

Последствия радиационного облучения

Опасное влияние радиации на организм человека обуславливается воздействием свободных радикалов. Они образуются на химическом уровне из-за воздействия облучения и поражают в первую очередь быстро делящиеся клетки. Соответственно в большей мере от радиации страдают органы кроветворения и половая система.

Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.

Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.

Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.

Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.

Мутации

Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.

Из-за нарушений в цепочке молекулы ДНК, вызванных свободными радикалами, у плода могут развиваться различные отклонения, связанные с проблемами внутренних органов, внешними уродствами или нарушениями психики. При этом данное нарушение может распространяться и на будущие поколения.

Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.

Лейкоз и другие виды рака

Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:

  1. Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
  2. Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
  3. Воспаляются лимфатические узлы.
  4. Увеличиваются печень и селезенка.
  5. Затрудняется дыхание.
  6. На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
  7. Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.

До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.

Затем радиационные эффекты облучения людей чаще всего приводят к:

  1. Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
  2. Рак щитовидной железы. Им также страдает 1% облученных.
  3. Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.

К счастью, современная медицина вполне может справиться с онкологическими заболеваниями на ранних стадиях, если влияние радиации на здоровье человека было кратковременным и достаточно слабым.

Что влияет на последствия облучения

Влияние радиации на живые организмы сильно различается от мощности и типа излучения: альфа, бета или Гамма. В зависимости от этого одна и та же доза радиации может оказаться практически безопасной или привести к скоропостижной смерти.

Также важно понимать, что воздействие радиации на организм человека редко бывает одновременным. Получить дозу в 0.5 Зиверта за один раз – это опасно, а 5-6 – смертельно. Но сделав несколько рентгеновских снимков по 0,3 Зиверта в течение определенного времени, человек дает возможность организму очиститься. Поэтому негативные последствия радиационного облучения просто не проявляются, так как при суммарной дозе в несколько Зиверт, единовременно на тело будет действовать лишь малая часть облучения.

Кроме того, различные последствия действия радиации на человека сильно зависят от индивидуальных особенностей организма. Здоровое тело дольше сопротивляется разрушительному действию облучения. Но лучше всего для обеспечения безопасности радиации для человека, как можно меньше контактировать с излучением для минимизации ущерба.

События последних десятилетий вызвали множество дискуссий о том, чем опасна радиация для человека и как избежать ее влияния. Радиацией называют присущую частицам способность излучать или распространять в пространство энергию. Мощность этой энергии воздействует на вещества, приводя к появлению разнозаряженных ионов. Предметы, выделяющие ионизирующее излучение, превращаются в радиоактивные.

Радиация и ее особенности

Частицы, создающие излучение, выпадают из ядра атома элементов (урана и других). В самом ядре происходит радиоактивный распад. У одного элемента может быть несколько вариантов – изотопов, причем одни из них будут радиоактивными, а другие – стабильными.

У каждого из радиоактивных изотопов есть свой период жизни, заканчивающийся с распадом ядра. Срок, необходимый для распада половины ядер изотопов, называется периодом полураспада. Он может продолжаться от долей секунды и до миллионов лет.

В природе образование радиоактивных изотопов происходит естественным путем, но они могут создаваться и искусственно. Это случается при строительстве атомных электростанций, ядерных испытаниях.

Типы радиации

Излучение характеризуется энергией, составом и способностью к проникновению, оно бывает нескольких типов:

  1. Альфа-частиц – тяжелые гелиевые ядра с положительным зарядом, они дают мощную ионизацию.
  2. Бета-частицы – электроны с зарядом в виде потока с высокой способностью к проникновению.
  3. Гамма-поток – короткие , проникающие в структуру предметов.
  4. Рентген-излучение – электромагнитные волны с более низкой энергией.
  5. Нейтроны – нейтральные частицы, возникающие вблизи функционирующих ядерных реакторов.

Количество радиоактивных ядер, распадающихся за определенное время, называют активностью. Ее величина отражает число ионизирующих частиц, испускаемых источником за секунду.

Опасность радиации зависит от ее источников. Они бывают природными и техногенными. Первые формируют радиационный фон, который действует на все живое на Земле. Этот вид излучения глобален и постоянен. Радиация естественного типа создается за счет космических лучей и элементами, которые содержатся в земных породах, окружающей среде. Все это создает внешнее облучение людей.

В пищевых продуктах, воде и воздушной среде тоже есть определенное количество радиоактивных компонентов, они служат источником внутреннего облучения.

Важно! Каждый год житель Земли получает от природных источников облучение примерно в 180-220 миллибэр. Доза внутреннего облучения вдвое выше.

К техногенным источникам относится оборудование, используемое:

  • в промышленной сфере;
  • в сельскохозяйственной отрасли;
  • В научных разработках;
  • для выработки атомной энергии;
  • для создания и испытаний ядерного вооружения.

Способностью к облучению обладают препараты и приборы, которые активно используются в медицине. Такое воздействие оказывается только на определенные органы и части тела.

Опасность воздействия радиации на человека


Ученые давно доказали негативное действие радиации на человека. Достаточно вспомнить аварию в Чернобыле и количество людей, участвовавших в ликвидации последствий катастрофы, заболевших лучевой болезнью.

Чтобы понимать, какая радиация опасна для человека, необходимо знать, что ее источником может быть любое радиоактивное вещество или предмет. Такое влияние невозможно почувствовать или увидеть, его можно оценить только с помощью специального прибора. Насколько опасно облучение зависит от его типа, длительности и частоты облучения.

Наиболее опасным является гамма-излучение, частицы альфа наносят вред при непосредственном проникновении в органы пищеварения или легкие . Механизм воздействия выглядит следующим образом:

  1. Излучение вызывает ионизацию молекул организма, они переходят в возбужденное состояние.
  2. Начинается перераспределение избытка энергии.
  3. Молекулы, на которые подействовало излучение, передают энергию другим частицам.
  4. Запускается химическая стадия.
  5. Из-за нарушения молекулярных связей меняется структура липидов, белков и ДНК.

На фоне таких изменений развивается лучевая болезнь. Количество энергии, переданной излучением, называется дозой. Организм не способен создавать барьер такому излучению, воздействию может подвергнуться любая молекула. Это объясняет, почему радиация опасна для жизни.

Последствия заражения

Последствия действия радиации на организм можно разделить на две группы. Первую составляют генетические эффекты: мутации на уровне генов и хромосомные абберации. Ко второй относятся соматические проявления в виде лучевой болезни, локальных поражений, опухолей, рака, лейкозов.

Отдаленные последствия облучения проявляются в:

  • развитии иммунодефицита;
  • влиянии на наследственность;
  • повышенной чувствительности к заражению инфекциями;
  • нарушении гормонального равновесия;
  • развитии катаракты;
  • снижении продолжительности жизни;
  • задержках психического развития.

Радиоактивная опасность связана с возможностью нарушений в метаболизме, появления врожденных пороков у следующих поколений, бесплодием, выкидышами, инфекционными заболеваниями. Следствием облучения может стать летальный исход. Такое случается в случае даже однократного посещения территорий с мощным радиационным источником либо при постоянном получении определенных доз радиации от предметов, например, при их хранении дома.

Важно! Источником радиации может быть любая вещь, включая антикварные.

Главное, чем опасна радиация для детей – это необратимое влияние на растущие клетки. Во время формирования организма излучение в реакцию за более короткий срок. Крайне нежелательно влияние радиации на беременных женщин, клетки плода очень восприимчивы к нему.

Признаки облучения

Признаками радиационного облучения служат:

  • рвота;
  • дезориентация;
  • появление на теле язв, не поддающихся лечению;
  • кровотечения изо рта, носа, прямой кишки;
  • диарея с кровью;
  • радиационные ожоги на коже;
  • выпадение волос;
  • чувство слабости и усталости;
  • обмороки, головная боль;
  • раны на губах и во рту;
  • тремор, припадки;
  • лихорадка.

У людей, получивших дозу радиации, падает артериальное давление, нарушается работа сердца и сосудистый тонус. Может развиваться гепатит и цирроз печени, происходит сбой в функционировании желчевыводящей системы. В крови резко снижается уровень лейкоцитов.

Все это далеко не полный перечень того, чем радиоактивные вещества опасны для человека. Происходящие изменения затрагивают весь организм, оказывают негативное влияние на все его системы.

Профилактические меры

Избежать такого воздействия помогает регулярный контроль радиационного фона. Это касается производственных и жилых помещений, воды, продуктов питания. Во время замеров учитывается интенсивность излучения и степень опасности источника, определяется время, которое допустимо проводить рядом с ним без неприятных последствий.

Единицей измерения получаемого излучения является Зиверт. Величина показывает количество энергии, поглощенной килограммом биоткани на протяжении часа. предельно допустимой нормой считается 0,5 микрозиверт за час, нормальный показатель не должен быть выше 0,2 микрозиверта в час. Более высокие уровни – это опасная доза радиации для человека. Показатель в 5-6 зивертов смертелен .

Радиоактивные люди, получившие облучение, не могут быть источником радиации. Общаться с ними безопасно, лучевая болезнь не передается таким путем.

Людям, оказавшимся под воздействием опасного уровня радиации для человека, необходимо оказать первую помощь. Всю одежду следует снять и сразу утилизировать. Нужно как можно скорее принять душ с моющими средствами. В дальнейшем выведение вредных веществ осуществляется с помощью медицинских мероприятий и препаратов:


Определенную пользу приносят биологически активные добавки. Они содержат йод для ликвидации воздействия изотопов, накапливающихся в щитовидке, глины с цеолитами, связывающие радиационные отходы и выводящие их из организма. Устранить стронций помогают добавки с кальцием.

Как вывести радиацию из организма?

Процесс выведения радиации можно ускорить за счет правильного составления рационами. Для этого необходимо включение в меню:

  • виноградного сока с мякотью;
  • морепродуктов и рыбы;
  • хурмы;
  • растительного масла холодного отжима;
  • чернослива и отвара сухофруктов;
  • перепелиных яиц;
  • овсянки;
  • свеклы;
  • дрожжей естественного происхождения.

Хорошо дополнят рацион мед, рис и груши, в меню обязательно должны быть супы и достаточное количество жидкости. Особое внимание нужно уделить продуктам с содержанием селена (защищает от развития онкологических процессов), метионин (активизирует клеточную регенерацию), каротин (восстанавливает клеточную структуру).

Информация о пользе алкоголя для выведения радиации – не более чем миф. Водка наоборот способствует распределению вредных веществ по организму. Благоприятное воздействие может оказать красное сухое виноградное вино, но в очень небольших количествах.