Дрейф генов: основные закономерности данного процесса. Дрейф генов как фактор эволюции Какое значение для эволюции имеет дрейф генов




Никола́й Петро́вич Дуби́нин Областью научных интересов Н. П. Дубинина была общая и эволюционная генетика, а также применение генетики в сельском хозяйстве. эволюционная генетика Вместе с А. С. Серебровским показал дробимость гена, а также явление комплементарности гена.А. С. Серебровскимгена комплементарности Опубликовал ряд важных научных работ по структуре и функциям хромосом, показал наличие в популяциях генетического груза летальных и сублетальных мутаций.хромосом генетического груза мутаций Также работал в области космической генетики, над проблемами радиационной генетики.радиационной


Дрейф генов как фактор эволюции Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.


Дрейф генов как фактор эволюции При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.


Популяционные волны и дрейф генов Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны играют очень важную роль в эволюции популяций.


Серге́й Серге́евич Четверико́в () выдающийся русский биолог, генетик- эволюционист, сделавший первые шаги в направлении синтеза менделевской генетики и эволюционной теории Ч. Дарвина. Он раньше других ученых организовал экспериментальное изучение наследственных свойств у естественных популяций животных. Эти исследования позволили ему стать основоположником современной эволюционной генетики генетик эволюционист


Популяционные волны и дрейф генов В периоды резкого спада численности роль дрейфа генов сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности.



Эффект бутылочного горлышка в реальных популяциях Пример: Ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.


Современный пример действия эффекта бутылочного горлышка популяция сайгака. Численность антилопы сайгак сократилась на 95 % от приблизительно 1 миллиона в 1990 году до менее чем в 2004, главным образом по причинам браконьерства для нужд традиционной китайской медицинысайгака сайгак1990 году 2004


Год Популяция американского бизона до особей особей особей


Эффект основателя Животные и растения, как правило, проникают на новые для вида территории относительно малыми группами. Частоты аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя.


Ясно, что основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В (по системе групп крови АВ0) полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.





Дрейф генов и молекулярные часы эволюции Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции.


Закономерность Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют. Малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций.


Закономерность Чем больше времени прошло с момента выделения двух видов из общего предкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» - определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга.


Закономерность Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути.


Периодические или апериодические колебания численности особей популяции характерны для всех без исклю­чения живых организмов. Причинами таких колебаний могут быть различные абиотические и биотические факторы среды. Действие популяционных волн, или волн жизни, предполагает неизбирательное, случайное уничтожение особей , благодаря чему редкий перед колебанием численности генотип (аллель) может сделаться обычным и быть подхваченным естественным отбором. Если в дальнейшем численность популяции восстано­вится за счет этих особей, то это приведет к случайному измене­нию частот генов в генофонде данной популяции. Популяционные волны являются поставщиком эволюционного материала .

Классификация популяционных волн

1. Периодические колебания численности короткоживущих организмов характерны для большинства насекомых, однолет­них растений, большинства грибов и микроорганизмов. В ос­новном эти изменения вызваны сезонным колебанием числен­ности.

2. Непериодические колебания численности , зависящие от сложного сочетания разных факторов. В первую очередь они за­висят от благоприятных для данного вида (популяции) отноше­ний в пищевых цепочках: уменьшение хищников, увеличение кормовых ресурсов. Обычно такие колебания затрагивают не­сколько видов и животных, и растений в биогеоценозах, что мо­жет привести к коренным перестройкам всего биогеоценоза.

3. Вспышки численности видов в новых районах , где отсут­ствуют их естественные враги.

4. Резкие непериодические колебания численности , связан­ные с природными катастрофами (в результате засухи или по­жаров). Влияние популяционных волн особенное заметно в популя­циях очень малой величины (обычно при численности размно­жающихся особей не более 500). Именно в этих условиях популяционные волны могут как бы подставлять под действие есте­ственного отбора редкие мутации или устранять уже довольно обычные варианты.

Дрейф генов - это колебания частот генов в ряду поколений, вызываемые случайными причинами, например малочисленностью популяций. Дрейф генов – процесс совершенно случайный и относится к особому классу явлений, называемых ошибками выборки. Общее правило состоит в том, что величина ошибки выборки находится в обратной зависимости от величины выборки . Применительно к живым организмам это означает, что чем меньше число скрещивающихся особей в популяции, тем больше изменений, обусловленных дрейфом генов, будут претерпевать частоты аллелей.

Случайный рост частоты одной какой-либо мутации обычно обусловливается преимущественным размножением в изолированных популяциях. Это явление называется «эффектом родоначальника» . Он возникает, когда несколько семей создают новую популяцию на новой территории. В ней поддерживается высокая степень брачной изоляции, что способствует закреплению одних аллелей и элиминацию других. Последствия «эффекта» - неравномерное распределение наследственных заболеваний человеческих популяций на земле.

Случайные изменения частот аллелей, подобные тем, которые обусловлены «эффектом родоначальника», возникают и в случае, если в популяции в процессе эволюции происходит резкое сокращение численности.

Дрейф генов приводит к:

1) изменению генетической структуры популяций: усилению гомозиготности генофонда;

2) уменьшению генетической изменчивости популяций;

3) дивергенции популяций

Частота генов в популяции может варьировать под действием случайных факторов.

Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов.

Приведем простой пример. Представьте себе группу растений, населяющих изолированную горную долину. Популяция состоит из 100 взрослых растений, и лишь 2% растений в популяции содержат особенный вариант гена (например, затрагивающий окраску цветка), т. е. в рассматриваемой нами популяции этот ген имеется лишь у двух растений. Вполне возможно, что небольшое происшествие (например, наводнение или падение дерева) приведет к гибели обоих растений, и тогда этот особенный вариант гена (или, пользуясь научной терминологией, этот аллель) попросту исчезнет из популяции. А значит, будущие поколения будут уже не такими, как рассматриваемое нами.

Существуют и другие примеры дрейфа генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя .

Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка . Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.

В конце XIX века в результате охотничьего промысла были почти полностью истреблены северные морские слоны. Сегодня в популяции этих животных (восстановившей свою численность) наблюдается неожиданно маленькое количество генетических вариантов. Антропологи полагают, что первые современные люди пережили эффект бутылочного горлышка около 100 000 лет назад, и объясняют этим генетическое сходство людей между собой. Даже у представителей кланов гориллы, обитающих в одном африканском лесу, больше генетических вариантов, чем у всех человеческих существ на планете.

Относительно предыдущего поколения.

Энциклопедичный YouTube

    1 / 3

    Сдвиг и дрейф гриппа

    Последовательность процессов, характерных для видообразования

    Эволюция. Направляющие и не направляющие факторы эволюции,

    Субтитры

    Давайте представим, что это 2 сообщества, сообщество оранжевого и фиолетового цвета, и они отдельны друг от друга. И ваша цель заключается в том, чтобы проникнуть в эти сообщества, и установить, какой наиболее распространённый тип вируса гриппа циркулирует среди этих людей. Итак, вы проделываете это, и первое, что обнаруживаете, - нечто очень интересное. А именно, оказывается, что в оранжевом сообществе, отмечается лишь вирус гриппа A. Вы ведь не забыли, что у нас имеются 3 типа вирусов, а здесь, по всей видимости, наблюдается, что людей в этой группе поражает лишь тип A. Давайте, запишу вот здесь, тип A. А если вы посмотрите на фиолетовое сообщество, то увидите нечто противоположное. Вы увидите, что здесь люди тоже болеют гриппом, однако возбудителем всегда является тип В. Итак, эти люди поражаются вирусом гриппа типа B. И вирус гриппа типа В также имеет 8 фрагментов РНК. Давайте запишу в фиолетовом вот здесь, тип В. Итак, это первое, что вы должны выучить в первый день своей работы. И теперь имеется множество различных подтипов типа A, которые поражают оранжевое сообщество, и я изобразил здесь лишь доминирующий штамм. А на самом деле здесь может быть множество типов А, циркулирующих в оранжевом сообществе, однако это доминирующий штамм. И вы знаете, это же справедливо и для фиолетового сообщества. В нём также имеется несколько циркулирующих штаммов типа В. Однако доминирующий штамм в нём это тот, что я изобразил для 4. И теперь освобожу Немного места, и давайте объясню вам, что мы собираемся сделать. В течение следующего года, в течение следующих 12 месяцев, мы будем следить за этими двумя сообществами. И что от вас требуется, так это отмечать, в общем, что происходит в сообществе с доминирующим штаммом. Итак, что для нас важны не все штаммы, а доминирующий штамм. И мы хотим знать, как генетически различные штаммы могут сравниваться и что будет происходить в первый день нашей работы? Итак, когда я говорю генетические изменения, я в действительности сравниваю это с тем, что было в первый день нашей работы - сравнение с исходным штаммом. И в течение 12 месяцев у вас накапливается информация о том, какие происходили изменения во время вашей работы. Итак, давайте обозначим, что вы начали здесь, и проживаете вблизи фиолетового сообщества. И конечно, первоначально мы не замечаем никаких изменений. Вы анализируете штамм типа В и делаете вывод, что в нём также ещё отсутствуют изменения. Однако проходит некоторое время. Давайте скажем, что прошло некоторое время и вы вернулись, и осматриваете фиолетовое сообщество. И спрашиваете, какой самый тип штамма B встречается у них на сегодняшний день чаще всего. И они сообщают, что он в общих чертах такой же каким был прежде, и он существенно не изменился, однако произошли две точечных мутации. И в доминантном штамме произошла пара точечных мутаций, и поэтому он стал немного отличаться от исходного. И вы говорите: «Ну конечно, здесь имели место некоторые генетические изменения». Доминирующий штамм несколько изменился. И затем вы уходите и навещаете их через некоторое время, и они благодарят вас за повторный визит. И произошли ещё кое-какие изменения с момента вашего последнего посещения. И вы говорите: «Как интересно». Здесь требуется несколько более глубокий анализ. И это теперь вирус, вирус типа В, он выглядит несколько иначе по сравнению с тем, как он выглядел, когда вы начали работу. И вы продолжаете наблюдать за этим процессом, и знаете, что имеется мутация здесь, и ещё одна здесь. Итак, мутации как бы накапливаются. И в конечном итоге у вас получается пунктирная линия - что-то вроде этого, где имеют место следующие мутации на протяжении всего времени до конца года. И когда наступает конец года, и вы анализируете динамику вашего вируса, то можете сказать, что произошло несколько мутаций. Он несколько отличается от того, каким был в начале. И эти небольшие мутации я отмечу желтыми буквами Х. И как же мы назовём этот процесс? Мы назовём его генетическим дрейфом. Это генетический дрейф. Это процесс, происходящий в норме, который имеет место у многих типов вирусов и бактерий. В действительности все вирусы и бактерии делают ошибки, когда они реплицируют, и вы можете проследить за определённой степенью генетического дрейфа в течение времени. А теперь самое интересное. Вы идёте в оранжевое сообщество, в оранжевую страну, если хотите, и сообщаете, что хотите то же самое проделать с вирусом гриппа типа А. И в начале периода наблюдения различия отсутствуют. Однако вы возвращаетесь немного позже, и замечаете, что произошли некоторые изменения вот здесь, несколько мутаций, таких же, о которых мы говорили выше. И вы говорите, что это хорошо, что, похоже, произошли небольшие изменения. И затем вы обнаруживаете, что как вы знаете, произошла ещё одна мутация, когда вы вернулись из другого путешествия. И вы говорите: «Хорошо, похоже произошли ещё кое-какие изменения», И затем происходит что-то действительно интересное. Вы обнаруживаете, вернувшись из своего третьего путешествия, что весь сегмент полностью исчез, и замещён другим. И обнаруживаете большой новый фрагмент РНК. И как вы представляете цепочку генетических изменений? Различия действительно значимые, не правда ли? И вы соглашаетесь, что теперь примерно 1/8 всего изменилась, и это будет выглядеть примерно вот так. И это огромный скачок. И вы говорите: «Хорошо, теперь произошло значительное генетическое изменение». И затем вы снова возвращаетесь из путешествия, и обнаруживаете, что произошла небольшая мутация вот в этой зелёной РНК, и может быть, ещё одна вот здесь. И опять, вы отметили небольшие изменения. И обнаруживаете ещё одну мутацию вот здесь, и может быть, ещё и здесь. И вы продолжаете восстанавливать цепочку событий - вы очень ответственно подходите к своей работе - продолжаете составлять схему. И впоследствии оказывается, что произошёл ещё один значительный сдвиг. Давайте обозначим, что этот участок стал отличаться от этого. И таким образом, опять, у вас произошёл огромный скачок. Что-то вроде этого. И в заключение, в конце года, это продолжается, поскольку вы обнаружили ещё несколько мутаций. Итак, давайте скажем, что эти дополнительные мутации произошли здесь и здесь. Вот как это стало выглядеть. Согласны со мной? Генетические изменения в течение периода времени для оранжевой популяции, типа А, действительно выглядят несколько по-другому. И в нём содержатся элементы, которые я обозначил как генетический дрейф и сдвиг. А если быть более точным, то эта часть является вариантом крупного шифта. Вот здесь целый фрагмент РНК как бы встроился в доминантный вирус. Вот это 2 сдвига, которые могли произойти за этот год. А эти участки - давайте я обведу их другим цветом, скажем, вот здесь, - вот этот и этот, действительно выглядят более похожими на то, о чём мы говорили выше. Это своего рода стабильные изменения, стабильные мутации с течением времени. И это то, что мы обычно обозначаем термином «генетический дрейф». Итак, у вируса гриппа типа А, отмеченного оранжевым, вы можете наблюдать, что происходят некоторый дрейф и сдвиг. А при вирусе гриппа типа В имеет место лишь генетический дрейф. И то, что происходит в данный момент, является наиболее пугающей информацией о вирусе гриппа типа А, и это означает, что какие бы гигантские сдвиги вы не наблюдали, у вас имеются 2 гигантских дрейфа, 2 здесь, если произошли эти сдвиги, то всё сообщество ещё не столкнулось с этим новым вирусом гриппа типа А. Оно не готово к нему. Иммунная система жителей сообщества не знает, что с этим делать. И в результате множество людей заболевают. И происходит то, что мы называем пандемией. И в прошлом происходило несколько подобных пандемий. И каждый раз, как правило, они были обусловлены крупным генетическим сдвигом. И в результате множество людей, как я уже сказал, заболевают, попадают в больницу и даже могут умереть. Subtitles by the Amara.org community

Дрейф генов на примере

Механизм дрейфа генов может быть продемонстрирован на небольшом примере. Представим очень большую колонию бактерий, находящуюся изолированно в капле раствора. Бактерии генетически идентичны за исключением одного гена с двумя аллелями A и B . Аллель A присутствует у одной половины бактерий, аллель B - у другой. Поэтому частота аллелей A и B равна 1/2. A и B - нейтральные аллели, они не влияют на выживаемость или размножение бактерий. Таким образом, все бактерии в колонии имеют одинаковые шансы на выживание и размножение.

Затем размер капли уменьшаем таким образом, чтобы питания хватало лишь для 4 бактерий. Все остальные умирают без размножения. Среди четырёх выживших возможно 16 комбинаций для аллелей A и B :

(A-A-A-A), (B-A-A-A), (A-B-A-A), (B-B-A-A),
(A-A-B-A), (B-A-B-A), (A-B-B-A), (B-B-B-A),
(A-A-A-B), (B-A-A-B), (A-B-A-B), (B-B-A-B),
(A-A-B-B), (B-A-B-B), (A-B-B-B), (B-B-B-B).

Вероятность каждой из комбинаций

1 2 ⋅ 1 2 ⋅ 1 2 ⋅ 1 2 = 1 16 {\displaystyle {\frac {1}{2}}\cdot {\frac {1}{2}}\cdot {\frac {1}{2}}\cdot {\frac {1}{2}}={\frac {1}{16}}}

где 1/2 (вероятность аллеля A или B для каждой выжившей бактерии) перемножается 4 раза (общий размер результирующей популяции выживших бактерий)

Если сгруппировать варианты по числу аллелей, то получится следующая таблица:

Как видно из таблицы, в шести вариантах из 16 в колонии будет одинаковое количество аллелей A и B . Вероятность такого события 6/16. Вероятность всех прочих вариантов, где количество аллелей A и B неодинаково несколько выше и составляет 10/16.

Дрейф генов происходит при изменении частот аллелей в популяции из-за случайных событий. В данном примере популяция бактерий сократилась до 4 выживших (эффект бутылочного горлышка). Сначала колония имела одинаковые частоты аллелей A и B , но шансы, что частоты изменятся (колония подвергнется дрейфу генов) выше, чем шансы на сохранение оригинальной частоты аллелей. Также существует высокая вероятность (2/16), что в результате дрейфа генов один аллель будет утрачен полностью.

Экспериментальное доказательство С. Райта

С. Райт экспериментально доказал, что в маленьких популяциях частота мутантного аллеля меняется быстро и случайным образом. Его опыт был прост: в пробирки с кормом он посадил по две самки и по два самца мух дрозофил, гетерозиготных по гену А (их генотип можно записать Аа). В этих искусственно созданных популяциях концентрация нормального (А) и мутационного (а) аллелей составила 50 %. Через несколько поколений оказалось, что в некоторых популяциях все особи стали гомозиготными по мутантному аллелю (а), в других популяциях он был вовсе утрачен, и, наконец, часть популяций содержала как нормальный, так и мутантный аллель. Важно подчеркнуть, что, несмотря на снижение жизнеспособности мутантных особей и, следовательно, вопреки естественному отбору, в некоторых популяциях мутантный аллель полностью вытеснил нормальный. Это и есть результат случайного процесса - дрейфа генов .

Литература

  • Воронцов Н.Н., Сухорукова Л.Н. Эволюция органического мира. - М. : Наука, 1996. - С. 93-96. - ISBN 5-02-006043-7 .
  • Грин Н., Стаут У., Тейлор Д. Биология. В 3 томах. Том 2. - М. : Мир, 1996. - С. 287-288. -

ДРЕЙФ ГЕНОВ

Иногда эта концепция называется «эффект Сьюэлла - Райта», в честь предложивших ее двух популяционных генетиков. После того как Мендель доказал, что гены являются единицами наследственности, а Харди и Вайнберг продемонстрировали механизм их поведения, биологи поняли, что эволюция признаков может происходить не только посредством естественного отбора, но и случайно. Дрейф генов зависит от того, что изменение частоты аллелей в малых популяциях обусловлено исключительно случаем. Если число скрещиваний невелико, тогда реальное соотношение различных аллелей гена может сильно отличаться от рассчитанного на основе теоретической модели. Дрейф генов - это один из факторов, нарушающих равновесие Харди - Вайнберга.

На большие популяции со случайным скрещиванием огромное воздействие оказывает естественный отбор. В этих группах отбираются особи с адаптивными признаками, а другие безжалостно отсеиваются, и популяция методом естественного отбора становится более приспособленной к окружающей среде. В малых популяциях идут другие процессы и на них влияют другие факторы. Например, в малых популяциях велика вероятность случайного изменения частоты генов. Такие изменения не вызваны естественным отбором. Понятие дрейфа генов очень важно для малых популяций, поскольку они имеют малый генофонд. Это значит, что случайное исчезновение или появление аллеля гена у потомства приведет к значительным изменениям в генофонде. В больших популяциях такие колебания не приводят к заметным результатам, поскольку уравновешиваются большим числом скрещиваний и притоком генов со стороны других особей. В малых популяциях случайные события могут привести к эффекту «бутылочного горлышка».

Согласно определению, под дрейфом генов понимают случайные изменения генных частот, вызванные малой численностью популяции и нечастым скрещиванием. Дрейф генов наблюдается среди малых популяций, например, у островных переселенцев, у коала или больших панд.

См. также статьи «Эффект "бутылочного горлышка"», «Равновесие Харди - Вайнберга», «Менделизм», «Естественный отбор».

Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 10 Следы, оставленные три с половиной миллиона лет назад! Дарт, Брум и современные исследователи. Дрейф континентов. Поименный список гоминидов. Люси и ее сородичи. Столь длительная сохранность доисторических следов у Лаетоли – случай фантастический, но не

Из книги Генетика окрасов собак автора Робинсон Рой

СРАВНИТЕЛЬНАЯ СИМВОЛИКА ГЕНОВ Читатели, которые интересуются литературой по генетике, рано или поздно сталкиваются с проблемой путаницы в обозначениях генов. Дело в том, что различные авторы пользуются различными символами для обозначения одного и того же гена. Это

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Эволюция автора Дженкинс Мортон

ДРЕЙФ МАТЕРИКОВ В 1912 году немецкий ученый Альфред Вегенер предположил, что около 200 миллионов лет назад все материки Земли составляли единый массив суши, который он назвал Пангеей. В последующие 200 миллионов лет Пангея разделилась на несколько материков, которые стали

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Из книги Эволюция [Классические идеи в свете новых открытий] автора

Нейтральные мутации и генетический дрейф - движение без правил Ландшафт приспособленности - образ яркий и полезный, но, как и всякая модель, он несовершенен. Многие аспекты эволюционного процесса с его помощью отразить трудно или невозможно. Реальный ландшафт

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

Дрейф и отбор: кто кого? Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор - над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, - отрицательным, или

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Дупликация генов МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ - ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном (Haldane, 1933). Сегодня в этом нет никаких

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

ГЛАВА 3 Эволюция земной коры. Дрейф континентов и спрединг океанического дна. Мантийная конвекция Горные породы, формирующие кору Земли, как мы помним, бывают изверженные - первичные, образовавшиеся при охлаждении и затвердевании магмы, и осадочные - вторичные,

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

1. Промоторы генов В этом разделе мы кратко расскажем о том, какие нуклеотидные последовательности, прилегающие к генам, а иногда и внутри гена, ответственны за процесс транскрипции. У прокариот эти участки, с которыми связывается молекула РНК-полимеразы и откуда

Из книги Коннектом. Как мозг делает нас тем, что мы есть автора Сеунг Себастьян

Изменения активности генов Эволюция животных в целом и приматов в частности протекает не столько за счет изменения структуры белок-кодирующих генов, сколько за счет изменения их активности. Небольшое изменение в верхних этажах иерархически организованных

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

В поисках "генов доброты" Мы уже знаем, что, если закапать человеку в нос окситоцин, у него повышаются доверчивость и щедрость. Еще мы знаем, что эти черты характера являются отчасти наследственными. Исходя их этих фактов, естественно предположить, что те или иные варианты

Из книги автора

Глава 6. Разведение генов …воспитывавшихся в разных приемных семьях. Bouchard et al., 1990.…чем у изучавшихся пар людей, выбранных случайным образом. Строго говоря, корректное сравнение следует проводить с двумя представителями различных пар однояйцевых близнецов, выросших

Из книги автора

4.3. Взаимодействие генов В организме одновременно функционирует множество генов. В процессах реализации генетической информации в признак возможны многочисленные «пункты» взаимодействия разных генов на уровне биохимических реакций. Такие взаимодействия неизбежно

Из книги автора

7.1. Выделение генов Возможно использование нескольких путей выделения генов. Каждый из них имеет свои достоинства и недостатки.Химический синтез генов, т. е. синтез нуклеотидов с заданной последовательностью, соответствующей одному гену, впервые был осуществлен в

Из книги автора

8.4. Эволюция генов и геномов Анализ структуры и изменчивости генетического материала служит основой для различных теорий эволюции гена как элементарного носителя генетической информации. Какова была исходная организация гена? Или, другими словами, обусловлены ли